The Structure of Finite Algebras

The Structure of Finite Algebras

Author: David Charles Hobby

Publisher:

Published: 1988

Total Pages: 220

ISBN-13:

DOWNLOAD EBOOK

The utility of congruence lattices in revealing the structure of general algebras has been recognized since Garrett Birkhoff's pioneering work in the 1930s and 1940s. However, the results presented in this book are of very recent origin: most of them were developed in 1983. The main discovery presented here is that the lattice of congruences of a finite algebra is deeply connected to the structure of that algebra. The theory reveals a sharp division of locally finite varieties of algebras into six interesting new families, each of which is characterized by the behavior of congruences in the algebras. The authors use the theory to derive many new results that will be of interest not only to universal algebraists, but to other algebraists as well. The authors begin with a straightforward and complete development of basic tame congruence theory, a topic that offers great promise for a wide variety of investigations. They then move beyond the consideration of individual algebras to a study of locally finite varieties. A list of open problems closes the work.


Finite-Dimensional Division Algebras over Fields

Finite-Dimensional Division Algebras over Fields

Author: Nathan Jacobson

Publisher: Springer Science & Business Media

Published: 2009-12-09

Total Pages: 290

ISBN-13: 3642024297

DOWNLOAD EBOOK

Here, the eminent algebraist, Nathan Jacobsen, concentrates on those algebras that have an involution. Although they appear in many contexts, these algebras first arose in the study of the so-called "multiplication algebras of Riemann matrices". Of particular interest are the Jordan algebras determined by such algebras, and thus their structure is discussed in detail. Two important concepts also dealt with are the universal enveloping algebras and the reduced norm. However, the largest part of the book is the fifth chapter, which focuses on involutorial simple algebras of finite dimension over a field.


Introduction to Finite and Infinite Dimensional Lie (Super)algebras

Introduction to Finite and Infinite Dimensional Lie (Super)algebras

Author: Neelacanta Sthanumoorthy

Publisher: Academic Press

Published: 2016-04-26

Total Pages: 514

ISBN-13: 012804683X

DOWNLOAD EBOOK

Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their representations. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semi-simple Lie algebras. While discussing all classes of finite and infinite dimensional Lie algebras and Lie superalgebras in terms of their different classes of root systems, the book focuses on Kac-Moody algebras. With numerous exercises and worked examples, it is ideal for graduate courses on Lie groups and Lie algebras. - Discusses the fundamental structure and all root relationships of Lie algebras and Lie superalgebras and their finite and infinite dimensional representation theory - Closely describes BKM Lie superalgebras, their different classes of imaginary root systems, their complete classifications, root-supermultiplicities, and related combinatorial identities - Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras - Focuses on Kac-Moody algebras


Finite Automata, Their Algebras and Grammars

Finite Automata, Their Algebras and Grammars

Author: J. Richard Büchi

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 335

ISBN-13: 1461388538

DOWNLOAD EBOOK

The author, who died in 1984, is well-known both as a person and through his research in mathematical logic and theoretical computer science. In the first part of the book he presents the new classical theory of finite automata as unary algebras which he himself invented about 30 years ago. Many results, like his work on structure lattices or his characterization of regular sets by generalized regular rules, are unknown to a wider audience. In the second part of the book he extends the theory to general (non-unary, many-sorted) algebras, term rewriting systems, tree automata, and pushdown automata. Essentially Büchi worked independent of other rersearch, following a novel and stimulating approach. He aimed for a mathematical theory of terms, but could not finish the book. Many of the results are known by now, but to work further along this line presents a challenging research program on the borderline between universal algebra, term rewriting systems, and automata theory. For the whole book and again within each chapter the author starts at an elementary level, giving careful explanations and numerous examples and exercises, and then leads up to the research level. In this way he covers the basic theory as well as many nonstandard subjects. Thus the book serves as a textbook for both the beginner and the advances student, and also as a rich source for the expert.


Algebra IX

Algebra IX

Author: Алексей Иванович Кострикин

Publisher: Springer Science & Business Media

Published: 1996

Total Pages: 272

ISBN-13: 9783540570387

DOWNLOAD EBOOK

The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.


Algebras and Representation Theory

Algebras and Representation Theory

Author: Karin Erdmann

Publisher: Springer

Published: 2018-09-07

Total Pages: 304

ISBN-13: 3319919989

DOWNLOAD EBOOK

This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.


Automated Reasoning

Automated Reasoning

Author: David Basin

Publisher: Springer Science & Business Media

Published: 2004-06-22

Total Pages: 509

ISBN-13: 3540223452

DOWNLOAD EBOOK

This volume constitutes the proceedings of the 2nd International Joint C- ference on Automated Reasoning (IJCAR 2004) held July 4–8, 2004 in Cork, Ireland. IJCAR 2004 continued the tradition established at the ?rst IJCAR in Siena,Italyin2001,whichbroughttogetherdi?erentresearchcommunitieswo- ing in automated reasoning. The current IJCAR is the fusion of the following conferences: CADE: The International Conference on Automated Deduction, CALCULEMUS: Symposium on the Integration of Symbolic Computation and Mechanized Reasoning, FroCoS: Workshop on Frontiers of Combining Systems, FTP: The International Workshop on First-Order Theorem Proving, and TABLEAUX: The International Conference on Automated Reasoning with Analytic Tableaux and Related Methods. There were 74 research papers submitted to IJCAR as well as 12 system descriptions. After extensive reviewing, 26 research papers and 6 system - scriptions were accepted for presentation at the conference and publication in this volume. In addition, this volume also contains papers from the three invited speakers and a description of the CADE ATP system competition. We would like to acknowledge the enormous amount of work put in by the members of the program committee, the various organizing and steering c- mittees, the IJCAR o?cials, the invited speakers, and the additional referees named on the following pages. We would also like to thank Achim Brucker and Barbara Geiser for their help in producing this volume.


Lie Groups, Lie Algebras, and Representations

Lie Groups, Lie Algebras, and Representations

Author: Brian Hall

Publisher: Springer

Published: 2015-05-11

Total Pages: 452

ISBN-13: 3319134671

DOWNLOAD EBOOK

This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette