Wound Healing

Wound Healing

Author: Vlad Alexandrescu

Publisher: BoD – Books on Demand

Published: 2016-10-12

Total Pages: 546

ISBN-13: 9535126784

DOWNLOAD EBOOK

Outstanding scientific advances over the last decades unceasingly reveal real complexity of wound-healing process, astonishing in its staged progression, as life is unfolding itself. This natural course of tissue repair seems to bear thousands of overlapping molecular and macroscopic processes that nowadays only start to unfold to our knowledge. The present volume collecting recent scientific references proposes to readers a two-folded audacious goal. First, an updated design of intimate cellular mechanisms is entailed in tissue regeneration that emanates from the first section of the book. Next, a multidisciplinary therapeutic perspective that focuses on macroscopic healing throughout the second part of this work adds clinically integrated observation. Practical diagnostic and treatment information is appended in each chapter that may equally help experienced clinicians or dedicated students and researchers in broadening essential breaking points of their work. It is the wish of all multidisciplinary experts who gather prominent author's panel of this volume to incorporate latest medical reports and compel limits of current understanding for better tissue regeneration, limb salvage, and improved quality of life of our patients.


Simulation and Imaging of the Cardiac System

Simulation and Imaging of the Cardiac System

Author: S. Sideman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 448

ISBN-13: 9400949928

DOWNLOAD EBOOK

The ultrasound velocity tomography allows measurement of cardiac geometries for various phases in the cardiac cycle. The present tomograph makes reconstruc tions at intervals of 20 ms. Because of a lack of clear (intramural) landmarks (except the roots of the papillairy muscle), it is difficult to pinpoint spatial trajectories of particular points in the heart. Therefore, a second method was developed of injecting radiopaque markers in the heart and following their motion patterns during the cardiac cycle with help of a biplane X-ray equipment. The data obtained with both methods can be implemented in our finite element model of the heart to compute intramural stresses and strains. The results obtained sofar with the extended Darcy equation to account for the interaction of blood rheology and tissue mechanics look promising. Further testing with more sophisticated subjects than mentioned in Figure 9 is required before it will be implemented in our finite element model of the heart. We conclude that analysis of regional cardiac function, including regional myocardial blood flow, requires still a major research effort but the results obtained sofar justify, to our opinion, a continuation in this direction. Acknowledgement The authors acknowledge Dr. C. Borst and coworkers for doing the animal experiments and prof. Van Campen and dr. Grootenboer for their participation is some aspects of this work.