The Strong Sylow Theorem for the Prime p in Projective Special Linear Locally Finite Groups - Part 3 of a Trilogy
Author: Dipl.-Math. Felix F. Flemisch
Publisher: BoD – Books on Demand
Published: 2023-11-27
Total Pages: 50
ISBN-13: 3757860012
DOWNLOAD EBOOKIn Part 3 of the First Trilogy "Characterising Locally Finite Groups Satisfying the Strong Sylow Theorem for the Prime p" & "About the Strong Sylow Theorem for the Prime p in Simple Locally Finite Groups" & "The Strong Sylow Theorem for the Prime p in Projective Special Linear Locally Finite Groups" we continue the program begun in [10] to optimise along the way 1) its beautiful Theorem about the first type "An" of infinite families of finite simple groups step-by-step to further types by proving it for the second type "A = PSLn". We start with proving the beautiful Conjecture 2 of [10] about the General Linear Groups over (commutative) locally finite fields, stating that their rank is bounded in terms of their p-uniqueness, and then break down this insight to the Special Linear Groups and the Projective Special Linear (PSL) Groups over locally finite fields. We close with suggestions for future research -> regarding the remaining rank-unbounded types (the "Classical Groups") and the way 2), -> regarding the (locally) finite and p-soluble groups, and -> regarding Augustin-Louis Cauchy's and Évariste Galois' contributions to Sylow theory in finite groups, which culminate in the announcement of a Second Trilogy.