The Strain of Representation examines the quality of democratic representation in Europe, focusing on the way that political parties channel the preferences of different groups of citizens into government policies.
It is a truism to suggest that celebrity pervades all areas of life today. The growth and expansion of celebrity culture in recent years has been accompanied by an explosion of studies of the social function of celebrity and investigations into the fascination of specific celebrities. And yet fundamental questions about what the system of celebrity means for our society have yet to be resolved: Is celebrity a democratization of fame or a powerful hierarchy built on exclusion? Is celebrity created through public demand or is it manufactured? Is the growth of celebrity a harmful dumbing down of culture or an expansion of the public sphere? Why has celebrity come to have such prominence in today’s expanding media? Milly Williamson unpacks these questions for students and researchers alike, re-examining some of the accepted explanations for celebrity culture. The book questions assumptions about the inevitability of the growth of celebrity culture, instead explaining how environments were created in which celebrity output flourished. It provides a compelling new history of the development of celebrity (both long-term and recent) which highlights the relationship between the economic function of celebrity in various media and entertainment industries and its changing social meanings and patterns of consumption.
A Unified Approach to the Finite Element Method and Error Analysis Procedures provides an in-depth background to better understanding of finite element results and techniques for improving accuracy of finite element methods. Thus, the reader is able to identify and eliminate errors contained in finite element models. Three different error analysis techniques are systematically developed from a common theoretical foundation: 1) modeling erros in individual elements; 2) discretization errors in the overall model; 3) point-wise errors in the final stress or strain results. Thoroughly class tested with undergraduate and graduate students. A Unified Approach to the Finite Element Method and Error Analysis Procedures is sure to become an essential resource for students as well as practicing engineers and researchers. New, simpler element formulation techniques, model-independent results, and error measures New polynomial-based methods for identifying critical points New procedures for evaluating sheer/strain accuracy Accessible to undergraduates, insightful to researchers, and useful to practitioners Taylor series (polynomial) based Intuitive elemental and point-wise error measures Essential background information provided in 12 appendices
First published in 1957, this classic study has been reissued in a paperback version that includes an additional chapter bringing the material up to date. The author formulates the physical properties of crystals systematically in tensor notation, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them. The mathematical groundwork is laid in a discussion of tensors of the first and second ranks. Tensors of higher ranks and matrix methods are then introduced as natural developments of the theory. A similar pattern is followed in discussing thermodynamic and optical aspects.
Shell Structures. Theory and Applications, Volume 2 contains 77 contributions from over 17 countries, reflecting a wide spectrum of scientific and engineering problems of shell structures. The papers are divided into six broad groups: 1. General lectures; 2. Theoretical modeling; 3. Stability; 4. Dynamics; 5. Numerical analysis; 6. Engineering
Finite Element Analysis is a very popular, computer-based tool that uses a complex system of points called nodes to make a grid called a "mesh. " The mesh contains the material and structural properties that define how the structure will react to certain loading conditions, allowing virtual testing and analysis of stresses or changes applied to the material or component design. This groundbreaking text extends the usefulness of finite element analysis by helping both beginners and advanced users alike. It simplifies, improves, and extends both the finite element method while at the same time advancing adaptive refinement procedures. These improvements are made possible due to a change in notation that embeds knowledge of solid continuum mechanics into the equations used to formulate the stiffness matrices; this allows the modeling characteristics of individual elements to be identified by visual inspection. The ability to visually relate the equations involved in element formulation to the physical process they represent is like having an x-ray of the inner workings of the finite element method; it is similar is to the effect that Graphical User Interfaces or GUI's had on computing. As a result, students at any level of finite element study are provided with an understanding of the capabilities and limitations of this powerful analytic tool. The book presents * A more simplified approach to finite element analysis based on computational continuum mechanics * Physically interpretable notation that identifies a common basis for the finite element and the finite difference methods. * New point-wise error estimators that identify errors in terms of quantities of direct interest in solid mechanics
The essays in this book analyze and explain the crisis of democratic representation in five Andean countries: Bolivia, Colombia, Ecuador, Peru, and Venezuela. In this region, disaffection with democracy, political parties, and legislatures has spread to an alarming degree. Many presidents have been forced from office, and many traditional parties have fallen by the wayside. These five countries have the potential to be negative examples in a region that has historically had strong demonstration and diffusion effects in terms of regime changes. "The Crisis of Democratic Representation in the Andes" addresses an important question for Latin America as well as other parts of the world: Why does representation sometimes fail to work?
This book presents a straightforward introduction to the finite element method, error analysis, and adaptive refinement. It provides an easy-to-read overview that allows the contents of other finite element books and finite element courses to be seen in perspective as the various procedures are encountered. Furthermore, it provides developments that improve the procedures contained in the standard finite element textbook. As a result, when this book is used alone or in conjunction with other presentations, the reader is capable of critically assessing the capabilities of the finite element method.
In this volume scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar to membranes, but having a compression stiffness). In addition, phase transitions in shells and refined shell thermodynamics are discussed. The chapters of this book are the most exciting contributions presented at the EUROMECH 527 Colloquium “Shell-like structures: Non-classical Theories and Applications” held in Wittenberg, Germany.