Giant Resonances

Giant Resonances

Author: M. N. Harakeh

Publisher: Oxford Studies in Nuclear Phys

Published: 2001

Total Pages: 658

ISBN-13: 9780198517337

DOWNLOAD EBOOK

Giant resonances are collective excitations of the atomic nucleus, a typical quantum many-body system. The study of these fundamental modes has in many respects contributed to our understanding of the bulk behavior of the nucleus and of the dynamics of non-equilibrium excitations. Although the phenomenon of giant resonances has been known for more than 50 years, a large amount of information has been obtained in the last 10 years. This book gives an up-to-date, comprehensive account of our present knowledge of giant resonances. It presents the experimental facts and the techniques used to obtain that information, describes how these facts fit into theoretical concepts and how this allows to determine various nuclear properties which are otherwise difficult to obtain. Included as an introduction is an overview of the main facts, a short history of how the field has developed in the course of time, and a discussion of future perspectives.


Giant Resonances

Giant Resonances

Author: P.F. Bortigan

Publisher: Taylor & Francis

Published: 2023-05-31

Total Pages: 290

ISBN-13: 1000940667

DOWNLOAD EBOOK

The series of volumes, Contemporary Concepts in Physics, is addressed to the professional physicist and to the serious graduate student of physics. The subject of many-body systems constitutes a central chapter in the study of quantum mechanics, with applications ranging from elementary particle and condensed matter physics to the behaviour of compact stellar objects. Quantal size effects is one of the most fascinating facets of many-body physics; this is testified to by the developments taking place in the study of metallic clusters, fullerenes, nanophase materials, and atomic nuclei. This book is divided into two main parts: the study of giant resonances based on the atomic nucleus ground state (zero temperature), and the study of the y-decay of giant resonances from compound (finite temperature) nuclei.


Neutrons, Nuclei and Matter

Neutrons, Nuclei and Matter

Author: James Byrne

Publisher: Courier Corporation

Published: 2013-10-17

Total Pages: 797

ISBN-13: 0486320480

DOWNLOAD EBOOK

"A first-principles discussion of the fundamental neutron interactions . . . the writing is clear, and the explanations stress essential physical principles . . . an excellent survey."—Physics Today "A must for libraries of all universities and laboratories that are engaged in nuclear physics, particle physics, nuclear energy, astrophysics or condensed matter research . . . an outstanding multidisciplinary introduction to the physics and applications of cold neutrons."—Physics World "So many tables, facts and figures . . . the coverage is remarkable."—American Scientist This encyclopedic reference work covers nearly every conceivable aspect of neutron physics. Assembled by an expert in the field, it ranges from the neutron's role as a major element in tests of the standard model of astro-particle physics to its use in nuclear energy generation and the study of condensed matter systems. The multidisciplinary approach includes detailed treatment of strong, weak, and electromagnetic properties of the neutron as well as parallel developments in cosmology and astrophysics. Each subject is placed within its scientific context and receives considerable attention to historical detail.


Computational Nuclear Physics 1

Computational Nuclear Physics 1

Author: K. Langanke

Publisher: Springer Science & Business Media

Published: 2013-11-22

Total Pages: 220

ISBN-13: 3642763561

DOWNLOAD EBOOK

A variety of standard problems in theoretical nuclear-structure physics is addressed by the well-documented computer codes presented in this book. Most of these codes were available up to now only through personal contact. The subject matter ranges from microscopic models (the shell, Skyrme-Hartree-Fock, and cranked Nilsson models) through collective excitations (RPA, IBA, and geometric model) to the relativistic impulse approximation, three-body calculations, variational Monte Carlo methods, and electron scattering. The 5 1/4'' high-density floppy disk that comes with the book contains the FORTRAN codes of the problems that are tackled in each of the ten chapters. In the text, the precise theoretical foundations and motivations of each model or method are discussed together with the numerical methods employed. Instructions for the use of each code, and how to adapt them to local compilers and/or operating systems if necessary, are included.