This volume contains the proceedings of the Building Bridges: 3rd EU/US Summer School and Workshop on Automorphic Forms and Related Topics, which was held in Sarajevo from July 11–22, 2016. The articles summarize material which was presented during the lectures and speed talks during the workshop. These articles address various aspects of the theory of automorphic forms and its relations with the theory of L-functions, the theory of elliptic curves, and representation theory. In addition to mathematical content, the workshop held a panel discussion on diversity and inclusion, which was chaired by a social scientist who has contributed to this volume as well. This volume is intended for researchers interested in expanding their own areas of focus, thus allowing them to “build bridges” to mathematical questions in other fields.
In honor of Serge Lang’s vast contribution to mathematics, this memorial volume presents articles by prominent mathematicians. Reflecting the breadth of Lang's own interests and accomplishments, these essays span the field of Number Theory, Analysis and Geometry.
The Notes give a direct approach to the Selberg zeta-function for cofinite discrete subgroups of SL (2,#3) acting on the upper half-plane. The basic idea is to compute the trace of the iterated resolvent kernel of the hyperbolic Laplacian in order to arrive at the logarithmic derivative of the Selberg zeta-function. Previous knowledge of the Selberg trace formula is not assumed. The theory is developed for arbitrary real weights and for arbitrary multiplier systems permitting an approach to known results on classical automorphic forms without the Riemann-Roch theorem. The author's discussion of the Selberg trace formula stresses the analogy with the Riemann zeta-function. For example, the canonical factorization theorem involves an analogue of the Euler constant. Finally the general Selberg trace formula is deduced easily from the properties of the Selberg zeta-function: this is similar to the procedure in analytic number theory where the explicit formulae are deduced from the properties of the Riemann zeta-function. Apart from the basic spectral theory of the Laplacian for cofinite groups the book is self-contained and will be useful as a quick approach to the Selberg zeta-function and the Selberg trace formula.
This book is the result of several years of work by the authors on different aspects of zeta functions and related topics. The aim is twofold. On one hand, a considerable number of useful formulas, essential for dealing with the different aspects of zeta-function regularization (analytic continuation, asymptotic expansions), many of which appear here, in book format, for the first time are presented. On the other hand, the authors show explicitly how to make use of such formulas and techniques in practical applications to physical problems of very different nature. Virtually all types of zeta functions are dealt with in the book.
This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition: "The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)
The spectra of transfer operators associated to dynamical systems, when acting on suitable Banach spaces, contain key information about the ergodic properties of the systems. Focusing on expanding and hyperbolic maps, this book gives a self-contained account on the relation between zeroes of dynamical determinants, poles of dynamical zeta functions, and the discrete spectra of the transfer operators. In the hyperbolic case, the first key step consists in constructing a suitable Banach space of anisotropic distributions. The first part of the book is devoted to the easier case of expanding endomorphisms, showing how the (isotropic) function spaces relevant there can be studied via Paley–Littlewood decompositions, and allowing easier access to the construction of the anisotropic spaces which is performed in the second part. This is the first book describing the use of anisotropic spaces in dynamics. Aimed at researchers and graduate students, it presents results and techniques developed since the beginning of the twenty-first century.
The authors give a self contained exposition of the theory of Selberg zeta and theta functions for bundles on compact locally symmetric spaces of rank 1. The connection between these functions and the spectrum of certain elliptic differential operators is provided by a version of the Selberg trace formula. The theta function is a regularized trace of the wave group. Originally defined geometrically, the Selberg zeta function has a representation in terms of regularized determinants. This leads to a complete description of its singularities. These results are employed in order to establish a functional equation and further properties of the Ruelle zeta function. A couple of explicit examples is worked out. Additional chapters are devoted to the theta function of Riemannian surfaces with cusps and to alternative descriptions of the singularities of the Selberg zeta function in terms of Lie algebra and group cohomology.