An Approach to the Selberg Trace Formula via the Selberg Zeta-Function

An Approach to the Selberg Trace Formula via the Selberg Zeta-Function

Author: Jürgen Fischer

Publisher: Springer

Published: 2006-11-15

Total Pages: 188

ISBN-13: 3540393315

DOWNLOAD EBOOK

The Notes give a direct approach to the Selberg zeta-function for cofinite discrete subgroups of SL (2,#3) acting on the upper half-plane. The basic idea is to compute the trace of the iterated resolvent kernel of the hyperbolic Laplacian in order to arrive at the logarithmic derivative of the Selberg zeta-function. Previous knowledge of the Selberg trace formula is not assumed. The theory is developed for arbitrary real weights and for arbitrary multiplier systems permitting an approach to known results on classical automorphic forms without the Riemann-Roch theorem. The author's discussion of the Selberg trace formula stresses the analogy with the Riemann zeta-function. For example, the canonical factorization theorem involves an analogue of the Euler constant. Finally the general Selberg trace formula is deduced easily from the properties of the Selberg zeta-function: this is similar to the procedure in analytic number theory where the explicit formulae are deduced from the properties of the Riemann zeta-function. Apart from the basic spectral theory of the Laplacian for cofinite groups the book is self-contained and will be useful as a quick approach to the Selberg zeta-function and the Selberg trace formula.


Spectral Decomposition and Eisenstein Series

Spectral Decomposition and Eisenstein Series

Author: Colette Moeglin

Publisher: Cambridge University Press

Published: 1995-11-02

Total Pages: 382

ISBN-13: 9780521418935

DOWNLOAD EBOOK

A self-contained introduction to automorphic forms, and Eisenstein series and pseudo-series, proving some of Langlands' work at the intersection of number theory and group theory.


Operator Theory, Operator Algebras and Their Interactions with Geometry and Topology

Operator Theory, Operator Algebras and Their Interactions with Geometry and Topology

Author: Raul E Curto

Publisher: Springer Nature

Published: 2020-12-12

Total Pages: 531

ISBN-13: 3030433803

DOWNLOAD EBOOK

This book is the proceeding of the International Workshop on Operator Theory and Applications (IWOTA) held in July 2018 in Shanghai, China. It consists of original papers, surveys and expository articles in the broad areas of operator theory, operator algebras and noncommutative topology. Its goal is to give graduate students and researchers a relatively comprehensive overview of the current status of research in the relevant fields. The book is also a special volume dedicated to the memory of Ronald G. Douglas who passed away on February 27, 2018 at the age of 79. Many of the contributors are Douglas’ students and past collaborators. Their articles attest and commemorate his life-long contribution and influence to these fields.


Spectral Methods of Automorphic Forms

Spectral Methods of Automorphic Forms

Author: Henryk Iwaniec

Publisher: American Mathematical Society, Revista Matemática Iberoamericana (RMI), Madrid, Spain

Published: 2021-11-17

Total Pages: 220

ISBN-13: 1470466228

DOWNLOAD EBOOK

Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this book was an underground classic, both as a textbook and as a respected source for results, ideas, and references. Iwaniec treats the spectral theory of automorphic forms as the study of the space of $L^2$ functions on the upper half plane modulo a discrete subgroup. Key topics include Eisenstein series, estimates of Fourier coefficients, Kloosterman sums, the Selberg trace formula and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 Cole Prize for his fundamental contributions to number theory.


Lectures on the Arthur-Selberg Trace Formula

Lectures on the Arthur-Selberg Trace Formula

Author: Stephen S. Gelbart

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 112

ISBN-13: 0821805711

DOWNLOAD EBOOK

The Arthur-Selberg trace formula is an equality between two kinds of traces: the geometric terms given by the conjugacy classes of a group and the spectral terms given by the induced representations. In general, these terms require a truncation in order to converge, which leads to an equality of truncated kernels. The formulas are difficult in general and even the case of $GL$(2) is nontrivial. The book gives proof of Arthur's trace formula of the 1970s and 1980s, with special attention given to $GL$(2). The problem is that when the truncated terms converge, they are also shown to be polynomial in the truncation variable and expressed as ``weighted'' orbital and ``weighted'' characters. In some important cases the trace formula takes on a simple form over $G$. The author gives some examples of this, and also some examples of Jacquet's relative trace formula. This work offers for the first time a simultaneous treatment of a general group with the case of $GL$(2). It also treats the trace formula with the example of Jacquet's relative formula. Features: Discusses why the terms of the geometric and spectral type must be truncated, and why the resulting truncations are polynomials in the truncation of value $T$. Brings into play the significant tool of ($G, M$) families and how the theory of Paley-Weiner is applied. Explains why the truncation formula reduces to a simple formula involving only the elliptic terms on the geometric sides with the representations appearing cuspidally on the spectral side (applies to Tamagawa numbers). Outlines Jacquet's trace formula and shows how it works for $GL$(2).


Traces of Hecke Operators

Traces of Hecke Operators

Author: Andrew Knightly

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 392

ISBN-13: 0821837397

DOWNLOAD EBOOK

The Fourier coefficients of modular forms are of widespread interest as an important source of arithmetic information. In many cases, these coefficients can be recovered from explicit knowledge of the traces of Hecke operators. The original trace formula for Hecke operators was given by Selberg in 1956. Many improvements were made in subsequent years, notably by Eichler and Hijikata. This book provides a comprehensive modern treatment of the Eichler-Selberg/Hijikata trace formulafor the traces of Hecke operators on spaces of holomorphic cusp forms of weight $\mathtt{k >2$ for congruence subgroups of $\operatorname{SL 2(\mathbf{Z )$. The first half of the text brings together the background from number theory and representation theory required for the computation. Thisincludes detailed discussions of modular forms, Hecke operators, adeles and ideles, structure theory for $\operatorname{GL 2(\mathbf{A )$, strong approximation, integration on locally compact groups, the Poisson summation formula, adelic zeta functions, basic representation theory for locally compact groups, the unitary representations of $\operatorname{GL 2(\mathbf{R )$, and the connection between classical cusp forms and their adelic counterparts on $\operatorname{GL 2(\mathbf{A )$. Thesecond half begins with a full development of the geometric side of the Arthur-Selberg trace formula for the group $\operatorname{GL 2(\mathbf{A )$. This leads to an expression for the trace of a Hecke operator, which is then computed explicitly. The exposition is virtually self-contained, withcomplete references for the occasional use of auxiliary results. The book concludes with several applications of the final formula.