Provides a scientific basis for the cleanup and for the assessment of oil spills Enables Non-scientific officers to understand the science they use on a daily basis Multi-disciplinary approach covering fields as diverse as biology, microbiology, chemistry, physics, oceanography and toxicology Covers the science of oil spills from risk analysis to cleanup and through the effects on the environment Includes case studies examining and analyzing spills, such as Tasman Spirit oil spill on the Karachi Coast, and provides lessons to prevent these in the future
Oil Spill Science and Technology, Second Edition, delivers a multi-contributed view on the entire chain of oil-spill related topics from oil properties and behaviors, to remote sensing through the management side of contingency planning and communicating oil spill risk perceptions. Completely new case studies are included with special attention to the Deepwater Horizon event, covering the impacts of wetlands and sand beaches, a mass balance approach, and the process for removing petroleum chemicals still trapped near Alabama beaches. Other new information on lingering oil left behind from the Exxon Valdez spill, the emergency system used in the Prestige incident, and coverage on the Heibei Spirit spill in Korea are also included. This updated edition combines technology with case studies to identify the current state of knowledge surrounding oil spills that will encourage additional areas of research that are left to uncover in this critical sector of the oil and gas industry. - Updated with new chapters on risk analysis and communication, contingency planning, restoration, and case studies - Supported with technological advances evolved from the Deepwater Horizon/BP oil tragedy and events in the Arctic/Antarctic - Multi-contributed from various industry experts to provide an extensive background in technical equipment and worldwide procedures used today
Oil Spill Environmental Forensics provides a complete view of the various forensic techniques used to identify the source of an oil spill into the environment. The forensic procedures described within represent various methods from scientists throughout the world. The authors explore which analytical and interpretative techniques are best suited for a particular oil spill project. This handy reference also explores the use of these techniques in actual environmental oil spills. Famous incidents discussed include the Exxon Valdez incident in 1989 and the Guanabara Bay, Brazil 2000. The authors chronicle both the successes and failures of the techniques used for each of these events. Dr. Zhendi Wang is a senior research scientist and Head of Oil Spill Research of Environment Canada, working in the oil and toxic chemical spill research field. He has authored over 270 academic publications and won a number of national and international scientific honors and awards. Dr. Wang is a member of American Chemical Society (ACS), the Canadian Society for Chemistry (CSC), and the International Society of Environmental Forensics (ISEF). - International experts show readers the forensic techniques used in oil spill investigations - Provides the theoretical basis and practical applications for investigative techniques - Contains numerous case studies demonstrating proven technique
U.S. Arctic waters north of the Bering Strait and west of the Canadian border encompass a vast area that is usually ice covered for much of the year, but is increasingly experiencing longer periods and larger areas of open water due to climate change. Sparsely inhabited with a wide variety of ecosystems found nowhere else, this region is vulnerable to damage from human activities. As oil and gas, shipping, and tourism activities increase, the possibilities of an oil spill also increase. How can we best prepare to respond to such an event in this challenging environment? Responding to Oil Spills in the U.S. Arctic Marine Environment reviews the current state of the science regarding oil spill response and environmental assessment in the Arctic region north of the Bering Strait, with emphasis on the potential impacts in U.S. waters. This report describes the unique ecosystems and environment of the Arctic and makes recommendations to provide an effective response effort in these challenging conditions. According to Responding to Oil Spills in the U.S. Arctic Marine Environment, a full range of proven oil spill response technologies is needed in order to minimize the impacts on people and sensitive ecosystems. This report identifies key oil spill research priorities, critical data and monitoring needs, mitigation strategies, and important operational and logistical issues. The Arctic acts as an integrating, regulating, and mediating component of the physical, atmospheric and cryospheric systems that govern life on Earth. Not only does the Arctic serve as regulator of many of the Earth's large-scale systems and processes, but it is also an area where choices made have substantial impact on life and choices everywhere on planet Earth. This report's recommendations will assist environmentalists, industry, state and local policymakers, and anyone interested in the future of this special region to preserve and protect it from damaging oil spills.
Marine oil spills are no longer considered unavoidable "accidents" resulting from adverse environmental conditions or functions of catastrophic events. More than 80% of all spills are the result of "human error". The focus of the current legal, regulatory, and convention framework affecting the transportation of oil by ship reflects a recent change in public attitude, in which there is an insistence upon protection of the world¿s marine environments, particularly coastal ecosystems. The outcome of such global attention is the creation of significant legal and political motivators for a cultural shift by the oil shipping industry, from an "evasion culture" to a "safety culture". The new safety culture connotes continuous improvement in ship operations and a willingness to adopt the evolving concepts of communication at all levels, better trained and qualified personnel on board ship, emphasis of safety from top down, and proactive institution of safety management systems. Mere compliance with international and national laws is no longer sufficient for future sustainable shipping. These changes and advancements in understanding the science and engineering of oil spills are the focus of this book on Oil Spills First Principles. They are Prevention, based upon adoption of the safety culture, and Best Response, utilizing scientific, technical and environmental data and information.Over the past 30 years, billions of US dollars have been spent in R&D planning, response and clean up of oil spills. All of these efforts have focused on achieving Best Response. The concept of time periods of "Technology Windows-of-Opportunity" for a given response and clean up technology has developed from the leadership and wisdom of researchers and responders from many nations using modeling of the weathering of spilled oil and technology effectiveness. The Windows-of-Opportunity strategy provides a scientific basis for policy and decision-making in oil spill planning, response, and training.A global paradigm shift is needed to more effectively utilize and expedite the application of lessons learned in both prevention and clean up. Recognition of economic, political, and legal benefits accruing from environmental protection is good for business and critical for sustainable shipping.
Since the early 1970s, experts have recognized that petroleum pollutants were being discharged in marine waters worldwide, from oil spills, vessel operations, and land-based sources. Public attention to oil spills has forced improvements. Still, a considerable amount of oil is discharged yearly into sensitive coastal environments. Oil in the Sea provides the best available estimate of oil pollutant discharge into marine waters, including an evaluation of the methods for assessing petroleum load and a discussion about the concerns these loads represent. Featuring close-up looks at the Exxon Valdez spill and other notable events, the book identifies important research questions and makes recommendations for better analysis ofâ€"and more effective measures againstâ€"pollutant discharge. The book discusses: Inputâ€"where the discharges come from, including the role of two-stroke engines used on recreational craft. Behavior or fateâ€"how oil is affected by processes such as evaporation as it moves through the marine environment. Effectsâ€"what we know about the effects of petroleum hydrocarbons on marine organisms and ecosystems. Providing a needed update on a problem of international importance, this book will be of interest to energy policy makers, industry officials and managers, engineers and researchers, and advocates for the marine environment.
Approximately 3 million gallons of oil or refined petroleum products are spilled into U.S. waters every year. Oil dispersants (chemical agents such as surfactants, solvents, and other compounds) are used to reduce the effect of oil spills by changing the chemical and physical properties of the oil. By enhancing the amount of oil that physically mixes into the water, dispersants can reduce the potential that a surface slick will contaminate shoreline habitats. Although called for in the Oil Pollution Act of 1990 as a tool for minimizing the impact of oil spills, the use of chemical dispersants has long been controversial. This book reviews the adequacy of existing information and ongoing research regarding the effectiveness of dispersants as an oil spill response technique, as well as the effect of dispersed oil on marine and coastal ecosystems. Oil Spill Dispersants also includes recommended steps for policy makers faced with making hard choices regarding the use of dispersants as part of spill contingency planning efforts or during actual spills.
Scientists directly involved in studying the Exxon Valdez spill provide a comprehensive synthesis of scientific information on long-term spill effects.