Safety Critical Systems Handbook: A Straightfoward Guide to Functional Safety, IEC 61508 (2010 Edition) and Related Standards, Including Process IEC 61511 and Machinery IEC 62061 AND ISO 13849, Third Edition, offers a practical guide to the functional safety standard IEC 61508. The book is organized into three parts. Part A discusses the concept of functional safety and the need to express targets by means of safety integrity levels. It places functional safety in context, along with risk assessment, likelihood of fatality, and the cost of conformance. It also explains the life-cycle approach, together with the basic outline of IEC 61508 (known as BS EN 61508 in the UK). Part B discusses functional safety standards for the process, oil, and gas industries; the machinery sector; and other industries such as rail, automotive, avionics, and medical electrical equipment. Part C presents case studies in the form of exercises and examples. These studies cover SIL targeting for a pressure let-down system, burner control system assessment, SIL targeting, a hypothetical proposal for a rail-train braking system, and hydroelectric dam and tidal gates. - The only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards - Helps readers understand the process required to apply safety critical systems standards - Real-world approach helps users to interpret the standard, with case studies and best practice design examples throughout
This handbook provides a consolidated, comprehensive information resource for engineers working with mission and safety critical systems. Principles, regulations, and processes common to all critical design projects are introduced in the opening chapters. Expert contributors then offer development models, process templates, and documentation guidelines from their own core critical applications fields: medical, aerospace, and military. Readers will gain in-depth knowledge of how to avoid common pitfalls and meet even the strictest certification standards. Particular emphasis is placed on best practices, design tradeoffs, and testing procedures. - Comprehensive coverage of all key concerns for designers of critical systems including standards compliance, verification and validation, and design tradeoffs - Real-world case studies contained within these pages provide insight from experience
The amount of software used in safety-critical systems is increasing at a rapid rate. At the same time, software technology is changing, projects are pressed to develop software faster and more cheaply, and the software is being used in more critical ways. Developing Safety-Critical Software: A Practical Guide for Aviation Software and DO-178C Compliance equips you with the information you need to effectively and efficiently develop safety-critical, life-critical, and mission-critical software for aviation. The principles also apply to software for automotive, medical, nuclear, and other safety-critical domains. An international authority on safety-critical software, the author helped write DO-178C and the U.S. Federal Aviation Administration’s policy and guidance on safety-critical software. In this book, she draws on more than 20 years of experience as a certification authority, an avionics manufacturer, an aircraft integrator, and a software developer to present best practices, real-world examples, and concrete recommendations. The book includes: An overview of how software fits into the systems and safety processes Detailed examination of DO-178C and how to effectively apply the guidance Insight into the DO-178C-related documents on tool qualification (DO-330), model-based development (DO-331), object-oriented technology (DO-332), and formal methods (DO-333) Practical tips for the successful development of safety-critical software and certification Insightful coverage of some of the more challenging topics in safety-critical software development and verification, including real-time operating systems, partitioning, configuration data, software reuse, previously developed software, reverse engineering, and outsourcing and offshoring An invaluable reference for systems and software managers, developers, and quality assurance personnel, this book provides a wealth of information to help you develop, manage, and approve safety-critical software more confidently.
The Safety Critical Systems Handbook: A Straightforward Guide to Functional Safety: IEC 61508 (2010 Edition), IEC 61511 (2016 Edition) & Related Guidance, Fourth Edition, presents the latest on the electrical, electronic, and programmable electronic systems that provide safety functions that guard workers and the public against injury or death, and the environment against pollution. The international functional safety standard IEC 61508 was revised in 2010, and authors David Smith and Kenneth Simpson provide a comprehensive guide to the revised standard, as well as the revised IEC 61511 (2016). The book enables engineers to determine if a proposed or existing piece of equipment meets the safety integrity levels (SIL) required by the various standards and guidance, and also describes the requirements for the new alternative route (route 2H), introduced in 2010. A number of other areas have been updated by Smith and Simpson in this new edition, including the estimation of common cause failure, calculation of PFDs and failure rates for redundant configurations, societal risk, and additional second tier guidance documents. As functional safety is applicable to many industries, this book will have a wide readership beyond the chemical and process sector, including oil and gas, machinery, power generation, nuclear, aircraft, and automotive industries, plus project, instrumentation, design, and control engineers. - Provides the only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards - Addresses the 2016 updates to IEC 61511 to helps readers understand the processes required to apply safety critical systems standards and guidance - Presents a real-world approach that helps users interpret new standards, with case studies and best practice design examples throughout
The Safety Critical Systems Handbook: A Straightforward Guide to Functional Safety: IEC 61508 (2010 Edition), IEC 61511 (2015 Edition) and Related Guidance, Fifth Edition presents the latest guidance on safety-related systems that guard workers and the public against injury and death, also discussing environmental risks. This comprehensive resource has been fully revised, with additional material on risk assessment, cybersecurity, COMAH and HAZID, published guidance documents/standards, quantified risk assessment and new worked examples. The book provides a comprehensive guide to the revised IEC 61508 standard as well as the 2016 IEC 61511. This book will have a wide readership, not only in the chemical and process industries, but in oil and gas, power generation, avionics, automotive, manufacturing and other sectors. It is aimed at most engineers, including those in project, control and instrumentation, design and maintenance disciplines. - Provides the only comprehensive guide to IEC 61508 and 61511 (updated for 2016) that ensures engineers are compliant with the latest process safety systems design and operation standards - Presents a real-world approach that helps users interpret the standard, with new case studies and best practice design examples using revised standards - Covers applications of the standard to device design
Reliability, Maintainability and Risk: Practical Methods for Engineers, Eighth Edition, discusses tools and techniques for reliable and safe engineering, and for optimizing maintenance strategies. It emphasizes the importance of using reliability techniques to identify and eliminate potential failures early in the design cycle. The focus is on techniques known as RAMS (reliability, availability, maintainability, and safety-integrity). The book is organized into five parts. Part 1 on reliability parameters and costs traces the history of reliability and safety technology and presents a cost-effective approach to quality, reliability, and safety. Part 2 deals with the interpretation of failure rates, while Part 3 focuses on the prediction of reliability and risk. Part 4 discusses design and assurance techniques; review and testing techniques; reliability growth modeling; field data collection and feedback; predicting and demonstrating repair times; quantified reliability maintenance; and systematic failures. Part 5 deals with legal, management and safety issues, such as project management, product liability, and safety legislation. - 8th edition of this core reference for engineers who deal with the design or operation of any safety critical systems, processes or operations - Answers the question: how can a defect that costs less than $1000 dollars to identify at the process design stage be prevented from escalating to a $100,000 field defect, or a $1m+ catastrophe - Revised throughout, with new examples, and standards, including must have material on the new edition of global functional safety standard IEC 61508, which launches in 2010
Electrical, electronic and programmable electronic systems, such as emergency shut down systems and railway signalling systems, increasingly carry out safety functions to guard workers and the public against injury or death and the environment against pollution. The international standard IEC 61508 has been developed as a generic standard that applies to all these systems irrespective of their application. IEC 61508 is seen by many professionals as complex. This book overcomes that complexity by introducing the standard in the context of safety in general before moving on to provide practical advice about implementing it and obtaining certification. It also explains how IEC 61508 relates to second tier standards and related guidance, such as IEC 61511, 61513, UKOOA, ISA S84.01 and DIN standards, among others. Throughout the text, the authors illustrate their explanations with examples to which the answers are supplied in the appendix. Four case studies with further exercises set the information in context. Templates and checklists for drawing up your own implementation plan and information on self-certification are also provided. As Functional Safety, the standard, is applicable to many industries, Functional Safety, the book, in its previous edition has proved to be an invaluable reference for professionals from a variety of industries, such as project/instrumentation/design/control engineers as well as safety professionals in oil and gas, chemical, rail, power generation, nuclear, aircraft, and automotive industries. The new edition includes a new chapter on IEC 61511, the process sector standard, published since the first edition. The text has been updated throughout in light of the authors’ recent experience and two case studies have been added. Dr. David J Smith, BSc, PhD, CEng, FIEE, HonFSaRS, FIQA, MIGasE, has been directly concerned with reliability, safety and software quality for 30 years. He has written a number of books on the subject as well as numerous papers. His PhD thesis was on the subject of reliability prediction accuracy and common cause failure. He chairs the IGasE panel which develops its guidelines on safety-related systems (now in its third edition). He has also made contributions to IEC 61508. Kenneth G. L. Simpson, MPhil, FIEE, FInstMC, MIGasE, has been associated with safety-related systems design and also with their assessment for 25 years. He is a member of the IEC 61508 drafting committee and also of the I Gas E panel which writes the gas industry guidance. Following a career in aerospace, Ken has spent 20 years in the control system industry and is a Director of Silvertech International plc, a leading designer of safety and control systems. He has written a number of papers on the topic and gives frequent talks.
Presents recent breakthroughs in the theory, methods, and applications of safety and risk analysis for safety engineers, risk analysts, and policy makers Safety principles are paramount to addressing structured handling of safety concerns in all technological systems. This handbook captures and discusses the multitude of safety principles in a practical and applicable manner. It is organized by five overarching categories of safety principles: Safety Reserves; Information and Control; Demonstrability; Optimization; and Organizational Principles and Practices. With a focus on the structured treatment of a large number of safety principles relevant to all related fields, each chapter defines the principle in question and discusses its application as well as how it relates to other principles and terms. This treatment includes the history, the underlying theory, and the limitations and criticism of the principle. Several chapters also problematize and critically discuss the very concept of a safety principle. The book treats issues such as: What are safety principles and what roles do they have? What kinds of safety principles are there? When, if ever, should rules and principles be disobeyed? How do safety principles relate to the law; what is the status of principles in different domains? The book also features: • Insights from leading international experts on safety and reliability • Real-world applications and case studies including systems usability, verification and validation, human reliability, and safety barriers • Different taxonomies for how safety principles are categorized • Breakthroughs in safety and risk science that can significantly change, improve, and inform important practical decisions • A structured treatment of safety principles relevant to numerous disciplines and application areas in industry and other sectors of society • Comprehensive and practical coverage of the multitude of safety principles including maintenance optimization, substitution, safety automation, risk communication, precautionary approaches, non-quantitative safety analysis, safety culture, and many others The Handbook of Safety Principles is an ideal reference and resource for professionals engaged in risk and safety analysis and research. This book is also appropriate as a graduate and PhD-level textbook for courses in risk and safety analysis, reliability, safety engineering, and risk management offered within mathematics, operations research, and engineering departments. NIKLAS MÖLLER, PhD, is Associate Professor at the Royal Institute of Technology in Sweden. The author of approximately 20 international journal articles, Dr. Möller's research interests include the philosophy of risk, metaethics, philosophy of science, and epistemology. SVEN OVE HANSSON, PhD, is Professor of Philosophy at the Royal Institute of Technology. He has authored over 300 articles in international journals and is a member of the Royal Swedish Academy of Engineering Sciences. Dr. Hansson is also a Topical Editor for the Wiley Encyclopedia of Operations Research and Management Science. JAN-ERIK HOLMBERG, PhD, is Senior Consultant at Risk Pilot AB and Adjunct Professor of Probabilistic Riskand Safety Analysis at the Royal Institute of Technology. Dr. Holmberg received his PhD in Applied Mathematics from Helsinki University of Technology in 1997. CARL ROLLENHAGEN, PhD, is Adjunct Professor of Risk and Safety at the Royal Institute of Technology. Dr. Rollenhagen has performed extensive research in the field of human factors and MTO (Man, Technology, and Organization) with a specific emphasis on safety culture and climate, event investigation methods, and organizational safety assessment.
This book gives a comprehensive guide on the fundamental concepts, applications, algorithms, protocols, new trends and challenges, and research results in the area of Green Information and Communications Systems. It is an invaluable resource giving knowledge on the core and specialized issues in the field, making it highly suitable for both the new and experienced researcher in this area. Key Features: - Core research topics of green information and communication systems are covered from a network design perspective, giving both theoretical and practical perspectives - Provides a unified covering of otherwise disperse selected topics on green computing, information, communication and networking - Includes a set of downloadable PowerPoint slides and glossary of terms for each chapter - A 'whose-who' of international contributors - Extensive bibliography for enhancing further knowledge Coverage includes: - Smart grid technologies and communications - Spectrum management - Cognitive and autonomous radio systems - Computing and communication architectures - Data centres - Distributed networking - Cloud computing - Next generation wireless communication systems - 4G access networking - Optical core networks - Cooperation transmission - Security and privacy - Core research topics of green information and communication systems are covered from a network design perspective, giving both a theoretical and practical perspective - A 'whose-who' of international contributors - Extensive bibliography for enhancing further knowledge
Examines the state-of-the-art in passenger car vehicle safety. Looks at both active and passive safety systems. Describes basic relationships and new developments related to accident avoidance (including man/machine interface) and mitigation of injuries. In addition to detail on accident avoidance, occupant protection and biomechanics, the book features thorough discussion of the interrelationships among the occupant, the vehicle and the restraint system (in frontal, lateral, rear impacts and rollover). Other subjects covered include safety legislation, vehicle body and interior design, accident simulation tests, pedestrian protection and compatibility.