Solar and Space Physics

Solar and Space Physics

Author: National Research Council

Publisher: National Academies Press

Published: 2014-09-25

Total Pages: 37

ISBN-13: 0309313953

DOWNLOAD EBOOK

In 2010, NASA and the National Science Foundation asked the National Research Council to assemble a committee of experts to develop an integrated national strategy that would guide agency investments in solar and space physics for the years 2013-2022. That strategy, the result of nearly 2 years of effort by the survey committee, which worked with more than 100 scientists and engineers on eight supporting study panels, is presented in the 2013 publication, Solar and Space Physics: A Science for a Technological Society. This booklet, designed to be accessible to a broader audience of policymakers and the interested public, summarizes the content of that report.


Plasma Turbulence in the Solar System

Plasma Turbulence in the Solar System

Author: Yasuhito Narita

Publisher: Springer Science & Business Media

Published: 2012-01-19

Total Pages: 108

ISBN-13: 364225666X

DOWNLOAD EBOOK

Dynamics of astrophysical systems is often described by plasma physics, yet understanding the nature of plasma turbulence remains as a challenge in physics in both theories and experiments. This book is an up-to-date summary and review of recent results in research on waves and turbulence in near-Earth space plasma turbulence, obtained by Cluster, the multi-spacecraft mission. Spatial and temporal structures of solar wind turbulence as well as its interaction with the bow shock ahead of the Earth are presented using Cluster data. The book presents (1) historical developments, (2) theoretical background of plasma physics, turbulence theories, and the plasma physical picture of the solar system, (3) analysis methods for multi-spacecraft data, (4) results of Cluster data analysis, and (5) impacts on astrophysics and Earth sciences.


Space Physics and Aeronomy, Magnetospheres in the Solar System

Space Physics and Aeronomy, Magnetospheres in the Solar System

Author: Romain Maggiolo

Publisher: John Wiley & Sons

Published: 2021-05-04

Total Pages: 61

ISBN-13: 1119507529

DOWNLOAD EBOOK

An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief


Turbulence in the Solar Wind

Turbulence in the Solar Wind

Author: Roberto Bruno

Publisher: Springer

Published: 2016-10-07

Total Pages: 270

ISBN-13: 3319434403

DOWNLOAD EBOOK

This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in order to explain the transport of mass, momentum and energy during the expansion. Further, existing models are compared with direct observations in the heliosphere. The problem of self-similar and anomalous fluctuations in the solar wind is then addressed using tools provided by dynamical system theory and discussed on the basis of available models and observations. The book highlights observations of Yaglom’s law in solar wind turbulence, which is one of the most important findings in fully developed turbulence and directly related to the long-lasting and still unsolved problem of solar wind plasma heating. Lastly, it includes a short chapter dedicated to the kinetic range of fluctuations, which has recently been receiving more attention from the space plasma community, since this is inherently related to turbulent energy dissipation and consequent plasma heating. It particularly focuses on the nature and role of the fluctuations populating this frequency range, and discusses several model predictions and recent observational findings in this context.


Problems of Geocosmos—2022

Problems of Geocosmos—2022

Author: Andrei Kosterov

Publisher: Springer Nature

Published: 2023-10-31

Total Pages: 454

ISBN-13: 3031407288

DOWNLOAD EBOOK

Problems of Geocosmos conference proceedings series provide a snapshot of current research in a broad area of Earth Sciences carried out in Russia and elsewhere. Themes covered include solar physics, physics of magnetosphere, ionosphere and atmosphere, solar-terrestrial coupling links, seismology and geodynamics, paleomagnetism and rock magnetism, as well as cross-disciplinary studies. The proceedings are carefully edited, providing a panoramic outlook of a broad area of Earth Sciences. The readership includes colleague researchers, students and early career scientists. The proceedings will help the readers to look at their research fields from various points of view. Problems of Geocosmos conferences are held by Earth Physics Department, St. Petersburg University bi-annually since 1994. It is one of the largest forums of this kind in Russia/former Soviet Union attracting up to 200 researchers in Earth and magnetospheric physics.


The Dynamical Ionosphere

The Dynamical Ionosphere

Author: Massimo Materassi

Publisher: Elsevier

Published: 2019-11-28

Total Pages: 340

ISBN-13: 0128147830

DOWNLOAD EBOOK

The Dynamical Ionosphere: A Systems Approach to Ionospheric Irregularity examines the Earth's ionosphere as a dynamical system with signatures of complexity. The system is robust in its overall configuration, with smooth space-time patterns of daily, seasonal and Solar Cycle variability, but shows a hierarchy of interactions among its sub-systems, yielding apparent unpredictability, space-time irregularity, and turbulence. This interplay leads to the need for constructing realistic models of the average ionosphere, incorporating the increasing knowledge and predictability of high variability components, and for addressing the difficulty of dealing with the worst cases of ionospheric disturbances, all of which are addressed in this interdisciplinary book. Borrowing tools and techniques from classical and stochastic dynamics, information theory, signal processing, fluid dynamics and turbulence science, The Dynamical Ionosphere presents the state-of-the-art in dealing with irregularity, forecasting ionospheric threats, and theoretical interpretation of various ionospheric configurations. - Presents studies addressing Earth's ionosphere as a complex dynamical system, including irregularities and radio scintillation, ionospheric turbulence, nonlinear time series analysis, space-ionosphere connection, and space-time structures - Utilizes interdisciplinary tools and techniques, such as those associated with stochastic dynamics, information theory, signal processing, fluid dynamics and turbulence science - Offers new data-driven models for different ionospheric variability phenomena - Provides a synoptic view of the state-of-the-art and most updated theoretical interpretation, results and data analysis tools of the "worst case" behavior in ionospheric configurations