With the contribution from more than one hundred CNS neurotrauma experts, this book provides a comprehensive and up-to-date account on the latest developments in the area of neurotrauma including biomarker studies, experimental models, diagnostic methods, and neurotherapeutic intervention strategies in brain injury research. It discusses neurotrauma mechanisms, biomarker discovery, and neurocognitive and neurobehavioral deficits. Also included are medical interventions and recent neurotherapeutics used in the area of brain injury that have been translated to the area of rehabilitation research. In addition, a section is devoted to models of milder CNS injury, including sports injuries.
This new Springer volume, which comes complete with a free DVD, is a comprehensive and detailed overview of the synapse with emphasis on the glutamatergic synapse. Most chapters relate the synapse’s functional aspects to its molecular mechanisms. This approach shows which mechanisms are characterized on both the functional and structural level and can thus be considered firmly established. It’s an important text for neuroscientists and disease-oriented clinicians in neurology.
Multiple sclerosis is a chronic and often disabling disease of the nervous system, affecting about 1 million people worldwide. Even though it has been known for over a hundred years, no cause or cure has yet been discovered-but now there is hope. New therapies have been shown to slow the disease progress in some patients, and the pace of discoveries about the cellular machinery of the brain and spinal cord has accelerated. This book presents a comprehensive overview of multiple sclerosis today, as researchers seek to understand its processes, develop therapies that will slow or halt the disease and perhaps repair damage, offer relief for specific symptoms, and improve the abilities of MS patients to function in their daily lives. The panel reviews existing knowledge and identifies key research questions, focusing on: Research strategies that have the greatest potential to understand the biological mechanisms of recovery and to translate findings into specific strategies for therapy. How people adapt to MS and the research needed to improve the lives of people with MS. Management of disease symptoms (cognitive impairment, depression, spasticity, vision problems, and others). The committee also discusses ways to build and financially support the MS research enterprise, including a look at challenges inherent in designing clinical trials. This book will be important to MS researchers, research funders, health care advocates for MS research and treatment, and interested patients and their families.
The adult vertebrate central nervous system mainly consists of neurons, astrocytes, microglia cells, and oligodendrocytes. Oligodendrocytes, the myelin-forming cells of the CNS, are subjected to cell stress and subsequent death in a number of metabolic or inflammatory disorders, among which multiple sclerosis (MS) is included. This disease is associated with the development of large demyelinated plaques, oligodendrocyte destruction, and axonal degeneration, paralleled by the activation of astrocytes and microglia as well as the recruitment of peripheral immune cells to the site of tissue injury. Of note, viable oligodendrocytes and an intact myelin sheath are indispensable for neuronal health. For example, it has been shown that oligodendrocytes provide nutritional support to neurons, fast axonal transport depends on proper oligodendrocyte function, and mice deficient in mature myelin proteins eventually display severe neurodegeneration. This Special Issue contains a collection of highly relevant primary research articles as well as review articles focusing on the development, physiology, and pathology of the oligodendrocyte–axon–myelin unit.
The successful treatment of acute stroke remains one of the major challenges in clinical medicine. Over the last decades, the understanding of stroke pathophysiology has greatly improved, while the therapeutic options in stroke therapy remain very limited. Today, hyperacute mechanisms of damage, such as excitotoxicity, can be discriminated from delayed ones, such as inflammation and apoptosis. Targeting of inflammation has already been successfully applied in various stroke models, but translation into a clinically efficacious strategy has not been achieved so far. In this book, leading experts in basic cerebrovascular research as well as stroke treatment review the current evidence for and against an important role for inflammation in stroke, and explore the potential of treating or modulating inflammation in stroke therapy.
The Mouse Nervous System provides a comprehensive account of the central nervous system of the mouse. The book is aimed at molecular biologists who need a book that introduces them to the anatomy of the mouse brain and spinal cord, but also takes them into the relevant details of development and organization of the area they have chosen to study. The Mouse Nervous System offers a wealth of new information for experienced anatomists who work on mice. The book serves as a valuable resource for researchers and graduate students in neuroscience. Systematic consideration of the anatomy and connections of all regions of the brain and spinal cord by the authors of the most cited rodent brain atlases A major section (12 chapters) on functional systems related to motor control, sensation, and behavioral and emotional states A detailed analysis of gene expression during development of the forebrain by Luis Puelles, the leading researcher in this area Full coverage of the role of gene expression during development and the new field of genetic neuroanatomy using site-specific recombinases Examples of the use of mouse models in the study of neurological illness
Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme
The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography
Despite enormous advances made in the development of external effector prosthetics over the last quarter century, significant questions remain, especially those concerning signal degradation that occurs with chronically implanted neuroelectrodes. Offering contributions from pioneering researchers in neuroprosthetics and tissue repair, Indwel