The Regenerator and the Stirling Engine

The Regenerator and the Stirling Engine

Author: Allan J. Organ

Publisher: Wiley-Blackwell

Published: 1997-03-06

Total Pages: 678

ISBN-13:

DOWNLOAD EBOOK

The Regenerator and the Stirling Engine examines the basic scientific and engineering principles of the Regenerator and the Stirling engine. Drawing upon his own research and collaboration with engine developers, Allan J Organ offers solutions to many of the problems which have prevented these engines operating at the levels of efficiency of which they are theoretically capable. The Regenerator and the Stirling Engine offers practising engineers and designers specific guidelines for building in optimum thermodynamic performance at the design stage. COMPLETE CONTENTS: Bridging the gap The Stirling cycle Heat transfer – and the price Similarity and scaling; Energetic similarity In support of similarity Hausen revised Connectivity and thermal shorting Real particle trajectories – natural co-ordinates The Stirling regenerator The Ritz rotary regenerator Compressibility effects Regenerator flow impedance Complex admittance – experimental corroboration Steady-flow Cf–Nre correlations inferred from linear-wave analysis Optimization Part I: without the computer Optimization Part II: cyclic steady state Elements of combustion Design study Hobbyhorse Origins Appendices


Stirling Convertor Regenerators

Stirling Convertor Regenerators

Author: Mounir B. Ibrahim

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 475

ISBN-13: 143983007X

DOWNLOAD EBOOK

Stirling Convertor Regenerators addresses the latest developments and future possibilities in the science and practical application of Stirling engine regenerators and technology. Written by experts in the vanguard of alternative energy, this invaluable resource presents integral scientific details and design concepts associated with Stirling conve


Stirling Cycle Engines

Stirling Cycle Engines

Author: Allan J. Organ

Publisher: John Wiley & Sons

Published: 2013-11-15

Total Pages: 284

ISBN-13: 1118818415

DOWNLOAD EBOOK

Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concept. Stirling Cycle Engines re-visits the design challenge, doing so in three stages. Firstly, unrealistic expectations are dispelled: chasing the Carnot efficiency is a guarantee of disappointment, since the Stirling engine has no such pretentions. Secondly, no matter how complex the gas processes, they embody a degree of intrinsic similarity from engine to engine. Suitably exploited, this means that a single computation serves for an infinite number of design conditions. Thirdly, guidelines resulting from the new approach are condensed to high-resolution design charts – nomograms. Appropriately designed, the Stirling engine promises high thermal efficiency, quiet operation and the ability to operate from a wide range of heat sources. Stirling Cycle Engines offers tools for expediting feasibility studies and for easing the task of designing for a novel application. Key features: Expectations are re-set to realistic goals. The formulation throughout highlights what the thermodynamic processes of different engines have in common rather than what distinguishes them. Design by scaling is extended, corroborated, reduced to the use of charts and fully Illustrated. Results of extensive computer modelling are condensed down to high-resolution Nomograms. Worked examples feature throughout. Prime movers (and coolers) operating on the Stirling cycle are of increasing interest to industry, the military (stealth submarines) and space agencies. Stirling Cycle Engines fills a gap in the technical literature and is a comprehensive manual for researchers and practitioners. In particular, it will support effort world-wide to exploit potential for such applications as small-scale CHP (combined heat and power), solar energy conversion and utilization of low-grade heat.


Stirling and Thermal-Lag Engines: Motive Power Without the Co2

Stirling and Thermal-Lag Engines: Motive Power Without the Co2

Author: Allan J. Organ

Publisher:

Published: 2023

Total Pages: 0

ISBN-13: 9781800611047

DOWNLOAD EBOOK

Existing literature focuses on the alleged merits of the Stirling engine. These are indeed latent but, decades on, remain to be fully realised. This is despite the fact that Stirling and other closed-cycle prime-movers offer a contribution to an ultra-low carbon economy. By contrast with solar panels, the initial manufacture of Stirling engines makes no demands on scarce or exotic raw materials. Further, calculating embodied carbon per kWh favours the Stirling engine by a wide margin. However, the reader expecting to find the Stirling engine promoted as a panacea for energy problems may be surprised to find the reverse. Stirling and Thermal-Lag Engines reflects upon the fact that there is more to be gained by approaching its subject as a problem than as a solution. The Achilles heel of the Stirling engine is a low numerical value of specific work, defined as work per cycle per swept volume per unit of charge pressure and conventionally denoted Beale number NB. Measured values remain unimproved since 1818, quantified here for the first time at 2% of the NB of the modern internal combustion engine! The low figure is traced to incomplete utilisation of the working gas. Only a small percentage of the charge gas - if any - is processed through a complete cycle, i.e., between temperature extremes. The book offers ready-made tools including a simplified algorithm for particle trajectory map construction; an author-patented mechanism delivering optimised working-gas distribution; flow and heat transfer data re-acquired in context and an illustrated re-derivation of the academically respected Method of Characteristics which now copes with shock formation and flow-area discontinuities. All formulations are presented in sufficient detail to allow the reader to 'pick up and run' with them using the data offered in the book. The various strands are drawn together in a comprehensively engineered design of an internally focusing solar Stirling engine, presented in a form allowing a reader with access to basic machining facilities to construct one. The sun does not always shine. But neither will the oil always flow. This new title offers an entrée to technology appropriate to the 21st century.


Free Piston Stirling Engines

Free Piston Stirling Engines

Author: Graham Walker

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 282

ISBN-13: 3642825265

DOWNLOAD EBOOK

DEFINITION AND NOMENCLATURE A Stirling engine is a mechanical device which operates on a closed regenerative thermodynamic cycle with cyclic compression and expansion of the working fluid at different temperature levels. The flow of working fluid is controlled only by the internal volume changes, there are no valves and, overall, there is a net conversion of heat to work or vice-versa. This generalized definition embraces a large family of machines with different functions; characteristics and configurations. It includes both rotary and reciprocating systems utilizing mechanisms of varying complexity. It covers machines capable of operating as a prime mover or power system converting heat supplied at high tempera ture to output work and waste heat at a lower temperature. It also covers work-consuming machines used as refrigerating systems and heat pumps abstracting heat from a low temperature source and delivering this plus the heat equivalent of the work consumed to a higher tem perature. Finally it covers work-consuming devices used as pressure generators compressing a fluid from a low pressure to a higher pres sure. Very similar machines exist which operate on an open regen erative cycle where the flow of working fluid is controlled by valves. For convenience these may be called Ericsson engines but unfortunate ly the distinction is not widely established and regenerative machines of both types are frequently called 'Stirling engines'.


Stirling Engine Design Manual

Stirling Engine Design Manual

Author: William Martini

Publisher: CreateSpace

Published: 2013-01-25

Total Pages: 414

ISBN-13: 9781482063035

DOWNLOAD EBOOK

For Stirling engines to enjoy widespread application and acceptance, not only must the fundamental operation of such engines be widely understood, but the requisite analytic tools for the stimulation, design, evaluation and optimization of Stirling engine hardware must be readily available. The purpose of this design manual is to provide an introduction to Stirling cycle heat engines, to organize and identify the available Stirling engine literature, and to identify, organize, evaluate and, in so far as possible, compare non-proprietary Stirling engine design methodologies. This report was originally prepared for the National Aeronautics and Space Administration and the U. S. Department of Energy.


Thermodynamics and Gas Dynamics of the Stirling Cycle Machine

Thermodynamics and Gas Dynamics of the Stirling Cycle Machine

Author: Allan J. Organ

Publisher: Cambridge University Press

Published: 1992-08-20

Total Pages: 454

ISBN-13: 052141363X

DOWNLOAD EBOOK

This 1992 book provides a coherent and comprehensive treatment of the thermodynamics and gas dynamics of the practical Stirling cycle. Invented in 1816, the Stirling engine is the subject of worldwide research and development on account of unique qualities - silence, indifference to heat source, low level of emissions when burning conventional fuels and an ability to function in reverse as heat pump or refrigerator. The student of engineering will discover an instructure and illuminating case study revealing the interactions of basic disciplines. The researcher will find the groundwork prepared for various types of computer simulation, Those involved in the use and teaching of solution methods for unsteady gas dynamics problems will find a comprehensive treatment on nonlinear and linear wave approaches, for the Stirling machine provides an elegant example of the application of each. The book will be of use to all those involved in researching, designing or manufacturing Stirling prime movers, coolers and related regenerative thermal machines.


The Philips Stirling Engine

The Philips Stirling Engine

Author: Clifford M. Hargreaves

Publisher: Elsevier Science & Technology

Published: 1991

Total Pages: 476

ISBN-13:

DOWNLOAD EBOOK

This book is about the Stirling engine and its development from the heavy cast-iron machine of the nineteenth century into the efficient high-speed engine of today. It is not a handbook: it does not tell the reader how to build a Stirling engine. It is rather the history of a research effort spanning nearly fifty years, together with an outline of principles, some technical details and descriptions of the more important engines. No one will dispute the position of Philips as the pioneer of the modern Stirling engine. Hence the title of the book, hence also the contents, which are confined largely to the Philips work on the subject. Valuable work has been done elsewhere but this is discussed only marginally in order to keep the book within a reasonable size. The book is addressed to a wide audience on an academic level. The first two chapters can be read by the technically interested layman but after that some engineering background and elementary mathematics are generally necessary.Heat engines are traditionally the engineer's route to thermodynamics: in this context, the Stirling engine, which is the simplest of all heat engines, is more suited as a practical example than either the steam engine or the internal-combustion engine. The book is also addressed to historians of technology, from the viewpoint of the twentieth century revival of the Stirling engine as well as its nineteenth century origins.