The Quantum Statistics of Dynamic Processes

The Quantum Statistics of Dynamic Processes

Author: Eugen Fick

Publisher: Springer

Published: 1990

Total Pages: 0

ISBN-13: 9783642837159

DOWNLOAD EBOOK

The methods of statistical physics have become increasingly important in recent years for the treatment of a variety of diverse physical problems. Of principal interest is the microscopic description of the dynamics of dissipative systems. Although a unified theoretical description has at present not yet been achieved, we have assumed the task of writing a textbook which summarizes those of the most important methods which are self-contained and complete in themselves. We cannot, of course, claim to have treated the field exhaustively. A microscopic description of physical phenomena must necessarily be based upon quantum theory, and we have therefore carried out the treatment of dynamic processes strictly within a quantum-theoretical framework. For this reason alone it was necessary to omit a number of extremely important theories which have up to now been formulated only in terms of classical statistics. The goal of this book is, on the one hand, to give an introduction to the general principles of the quantum statistics of dynamical processes, and, on the other, to provide readers who are interested in the treatment of particular phenomena with methods for solving specific problems. The theory is for the most part formulated within the calculational frame work of Liouville space, which, together with projector formalism, has become an expedient mathematical tool in statistical physics.


The Quantum Statistics of Dynamic Processes

The Quantum Statistics of Dynamic Processes

Author: Eugen Fick

Publisher: Springer

Published: 1990-09-06

Total Pages: 424

ISBN-13:

DOWNLOAD EBOOK

The methods of statistical physics have become increasingly important in recent years for the treatment of a variety of diverse physical problems. Of principal interest is the microscopic description of the dynamics of dissipative systems. Although a unified theoretical description has at present not yet been achieved, we have assumed the task of writing a textbook which summarizes those of the most important methods which are self-contained and complete in themselves. We cannot, of course, claim to have treated the field exhaustively. A microscopic description of physical phenomena must necessarily be based upon quantum theory, and we have therefore carried out the treatment of dynamic processes strictly within a quantum-theoretical framework. For this reason alone it was necessary to omit a number of extremely important theories which have up to now been formulated only in terms of classical statistics. The goal of this book is, on the one hand, to give an introduction to the general principles of the quantum statistics of dynamical processes, and, on the other, to provide readers who are interested in the treatment of particular phenomena with methods for solving specific problems. The theory is for the most part formulated within the calculational frame work of Liouville space, which, together with projector formalism, has become an expedient mathematical tool in statistical physics.


The Quantum Statistics of Dynamic Processes

The Quantum Statistics of Dynamic Processes

Author: Eugen Fick

Publisher: Springer

Published: 2012-01-29

Total Pages: 0

ISBN-13: 9783642837173

DOWNLOAD EBOOK

The methods of statistical physics have become increasingly important in recent years for the treatment of a variety of diverse physical problems. Of principal interest is the microscopic description of the dynamics of dissipative systems. Although a unified theoretical description has at present not yet been achieved, we have assumed the task of writing a textbook which summarizes those of the most important methods which are self-contained and complete in themselves. We cannot, of course, claim to have treated the field exhaustively. A microscopic description of physical phenomena must necessarily be based upon quantum theory, and we have therefore carried out the treatment of dynamic processes strictly within a quantum-theoretical framework. For this reason alone it was necessary to omit a number of extremely important theories which have up to now been formulated only in terms of classical statistics. The goal of this book is, on the one hand, to give an introduction to the general principles of the quantum statistics of dynamical processes, and, on the other, to provide readers who are interested in the treatment of particular phenomena with methods for solving specific problems. The theory is for the most part formulated within the calculational frame work of Liouville space, which, together with projector formalism, has become an expedient mathematical tool in statistical physics.


Quantum Statistics of Nonideal Plasmas

Quantum Statistics of Nonideal Plasmas

Author: Dietrich Kremp

Publisher: Springer Science & Business Media

Published: 2005-12-11

Total Pages: 536

ISBN-13: 3540263357

DOWNLOAD EBOOK

During the last decade impressive development and signi?cant advance of the physics of nonideal plasmas in astrophysics and in laboratories can be observed, creating new possibilities for experimental research. The enormous progress in laser technology, but also ion beam techniques, has opened new ways for the production and diagnosis of plasmas under extreme conditions, relevant for astrophysics and inertially con?ned fusion, and for the study of laser-matter interaction. In shock wave experiments, the equation of state and further properties of highly compressed plasmas can be investigated. This experimental progress has stimulated the further development of the statistical theory of nonideal plasmas. Many new results for thermodynamic and transport properties, for ionization kinetics, dielectric behavior, for the stopping power, laser-matter interaction, and relaxation processes have been achieved in the last decade. In addition to the powerful methods of quantum statistics and the theory of liquids, numerical simulations like path integral Monte Carlo methods and molecular dynamic simulations have been applied.


Introduction to Quantum Control and Dynamics

Introduction to Quantum Control and Dynamics

Author: Domenico D’Alessandro

Publisher: CRC Press

Published: 2021-07-28

Total Pages: 372

ISBN-13: 1000395057

DOWNLOAD EBOOK

The introduction of control theory in quantum mechanics has created a rich, new interdisciplinary scientific field, which is producing novel insight into important theoretical questions at the heart of quantum physics. Exploring this emerging subject, Introduction to Quantum Control and Dynamics presents the mathematical concepts and fundamental physics behind the analysis and control of quantum dynamics, emphasizing the application of Lie algebra and Lie group theory. To advantage students, instructors and practitioners, and since the field is highly interdisciplinary, this book presents an introduction with all the basic notions in the same place. The field has seen a large development in parallel with the neighboring fields of quantum information, computation and communication. The author has maintained an introductory level to encourage course use. After introducing the basics of quantum mechanics, the book derives a class of models for quantum control systems from fundamental physics. It examines the controllability and observability of quantum systems and the related problem of quantum state determination and measurement. The author also uses Lie group decompositions as tools to analyze dynamics and to design control algorithms. In addition, he describes various other control methods and discusses topics in quantum information theory that include entanglement and entanglement dynamics. Changes to the New Edition: New Chapter 4: Uncontrollable Systems and Dynamical Decomposition New section on quantum control landscapes A brief discussion of the experiments that earned the 2012 Nobel Prize in Physics Corrections and revised concepts are made to improve accuracy Armed with the basics of quantum control and dynamics, readers will invariably use this interdisciplinary knowledge in their mathematics, physics and engineering work.


Quantum Information Theory and Quantum Statistics

Quantum Information Theory and Quantum Statistics

Author: DĂ©nes Petz

Publisher: Springer Science & Business Media

Published: 2007-10-20

Total Pages: 221

ISBN-13: 3540746366

DOWNLOAD EBOOK

This concise and readable book addresses primarily readers with a background in classical statistical physics and introduces quantum mechanical notions as required. Conceived as a primer to bridge the gap between statistical physics and quantum information, it emphasizes concepts and thorough discussions of the fundamental notions and prepares the reader for deeper studies, not least through a selection of well chosen exercises.


Methods of Statistical Physics

Methods of Statistical Physics

Author: A. I. Akhiezer

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 467

ISBN-13: 1483189376

DOWNLOAD EBOOK

Methods of Statistical Physics is an exposition of the tools of statistical mechanics, which evaluates the kinetic equations of classical and quantized systems. The book also analyzes the equations of macroscopic physics, such as the equations of hydrodynamics for normal and superfluid liquids and macroscopic electrodynamics. The text gives particular attention to the study of quantum systems. This study begins with a discussion of problems of quantum statistics with a detailed description of the basics of quantum mechanics along with the theory of measurement. An analysis of the asymptotic behavior of universal quantities is also explained. Strong consideration is given to the systems with spontaneously broken system. Theories such as the kinetic theory of gases, the theory of Brownian motion, the theory of the slowing down of neutrons, and the theory of transport phenomena in crystals are discussed. The book will be a useful tool for physicists, mathematicians, students, and researchers in the field of statistical mechanics.


Quantum Dynamics with Trajectories

Quantum Dynamics with Trajectories

Author: Robert E. Wyatt

Publisher: Springer Science & Business Media

Published: 2006-05-28

Total Pages: 425

ISBN-13: 0387281452

DOWNLOAD EBOOK

This is a rapidly developing field to which the author is a leading contributor New methods in quantum dynamics and computational techniques, with applications to interesting physical problems, are brought together in this book Useful to both students and researchers


Statistical Mechanics, Kinetic theory, and Stochastic Processes

Statistical Mechanics, Kinetic theory, and Stochastic Processes

Author: C.V. Heer

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 619

ISBN-13: 0323144411

DOWNLOAD EBOOK

Statistical Mechanics, Kinetic Theory, and Stochastic Processes presents the statistical aspects of physics as a "living and dynamic" subject. In order to provide an elementary introduction to kinetic theory, physical systems in which particle-particle interaction can be neglected are considered. Transport phenomena in the free-molecular flow region for gases and the transport of thermal radiation are discussed. Discrete random processes such as random walk, binomial and Poisson distributions, and throwing of dice are studied by means of the characteristic function. Comprised of 11 chapters, this book begins with an introduction to the mass point gas as well as some elementary properties of space and velocity distributions. The discussion then turns to radiation and its interaction with an atom; probability, statistics, and conditional probability; intermolecular interactions; transport phenomena; and statistical thermodynamics. Molecular systems at low densities are also considered, together with non-ideal and real gases; liquids and solids; and stochastic processes, noise, and fluctuations. In particular, the response of atoms and molecules to perturbations and scattering by crystals, liquids, and high-pressure gases are examined. This monograph will be useful for undergraduate students, practitioners, and researchers in physics.