This revised edition of the bestselling Practice of Reservoir Engineering has been written for those in the oil industry requiring a working knowledge of how the complex subject of hydrocarbon reservoir engineering can be applied in the field in a practical manner. Containing additions and corrections to the first edition, the book is a simple statement of how to do the job and is particularly suitable for reservoir/production engineers as well as those associated with hydrocarbon recovery.This practical book approaches the basic limitations of reservoir engineering with the basic tenet of science: Occam's Razor, which applies to reservoir engineering to a greater extent than for most physical sciences - if there are two ways to account for a physical phenomenon, it is the simpler that is the more useful. Therefore, simplicity is the theme of this volume.Reservoir and production engineers, geoscientists, petrophysicists, and those involved in the management of oil and gas fields will want this edition.
"This book is fast becoming the standard text in its field", wrote a reviewer in the Journal of Canadian Petroleum Technology soon after the first appearance of Dake's book. This prediction quickly came true: it has become the standard text and has been reprinted many times. The author's aim - to provide students and teachers with a coherent account of the basic physics of reservoir engineering - has been most successfully achieved. No prior knowledge of reservoir engineering is necessary. The material is dealt with in a concise, unified and applied manner, and only the simplest and most straightforward mathematical techniques are used. This low-priced paperback edition will continue to be an invaluable teaching aid for years to come.
The Complete, Up-to-Date, Practical Guide to Modern Petroleum Reservoir Engineering This is a complete, up-to-date guide to the practice of petroleum reservoir engineering, written by one of the world’s most experienced professionals. Dr. Nnaemeka Ezekwe covers topics ranging from basic to advanced, focuses on currently acceptable practices and modern techniques, and illuminates key concepts with realistic case histories drawn from decades of working on petroleum reservoirs worldwide. Dr. Ezekwe begins by discussing the sources and applications of basic rock and fluid properties data. Next, he shows how to predict PVT properties of reservoir fluids from correlations and equations of state, and presents core concepts and techniques of reservoir engineering. Using case histories, he illustrates practical diagnostic analysis of reservoir performance, covers essentials of transient well test analysis, and presents leading secondary and enhanced oil recovery methods. Readers will find practical coverage of experience-based procedures for geologic modeling, reservoir characterization, and reservoir simulation. Dr. Ezekwe concludes by presenting a set of simple, practical principles for more effective management of petroleum reservoirs. With Petroleum Reservoir Engineering Practice readers will learn to • Use the general material balance equation for basic reservoir analysis • Perform volumetric and graphical calculations of gas or oil reserves • Analyze pressure transients tests of normal wells, hydraulically fractured wells, and naturally fractured reservoirs • Apply waterflooding, gasflooding, and other secondary recovery methods • Screen reservoirs for EOR processes, and implement pilot and field-wide EOR projects. • Use practical procedures to build and characterize geologic models, and conduct reservoir simulation • Develop reservoir management strategies based on practical principles Throughout, Dr. Ezekwe combines thorough coverage of analytical calculations and reservoir modeling as powerful tools that can be applied together on most reservoir analyses. Each topic is presented concisely and is supported with copious examples and references. The result is an ideal handbook for practicing engineers, scientists, and managers—and a complete textbook for petroleum engineering students.
Practical Reservoir Characterization expertly explains key technologies, concepts, methods, and terminology in a way that allows readers in varying roles to appreciate the resulting interpretations and contribute to building reservoir characterization models that improve resource definition and recovery even in the most complex depositional environments. It is the perfect reference for senior reservoir engineers who want to increase their awareness of the latest in best practices, but is also ideal for team members who need to better understand their role in the characterization process. The text focuses on only the most critical areas, including modeling the reservoir unit, predicting well behavior, understanding past reservoir performance, and forecasting future reservoir performance. The text begins with an overview of the methods required for analyzing, characterizing, and developing real reservoirs, then explains the different methodologies and the types and sources of data required to characterize, forecast, and simulate a reservoir. - Thoroughly explains the data gathering methods required to characterize, forecast, and simulate a reservoir - Provides the fundamental background required to analyze, characterize, and develop real reservoirs in the most complex depositional environments - Presents a step-by-step approach for building a one, two, or three-dimensional representation of all reservoir types
Advanced Reservoir Engineering offers the practicing engineer and engineering student a full description, with worked examples, of all of the kinds of reservoir engineering topics that the engineer will use in day-to-day activities. In an industry where there is often a lack of information, this timely volume gives a comprehensive account of the physics of reservoir engineering, a thorough knowledge of which is essential in the petroleum industry for the efficient recovery of hydrocarbons.Chapter one deals exclusively with the theory and practice of transient flow analysis and offers a brief but thorough hands-on guide to gas and oil well testing. Chapter two documents water influx models and their practical applications in conducting comprehensive field studies, widely used throughout the industry. Later chapters include unconventional gas reservoirs and the classical adaptations of the material balance equation.* An essential tool for the petroleum and reservoir engineer, offering information not available anywhere else* Introduces the reader to cutting-edge new developments in Type-Curve Analysis, unconventional gas reservoirs, and gas hydrates * Written by two of the industry's best-known and respected reservoir engineers
This book wxplains the fundamentals of reservoir engineering and their practical application in conducting a comprehensive field study.Two new chapters have been included in this second edition: chapter 14 and 15.
The petroleum geologist and engineer must have a working knowledge of petrophysics in order to find oil reservoirs, devise the best plan for getting it out of the ground, then start drilling. This book offers the engineer and geologist a manual to accomplish these goals, providing much-needed calculations and formulas on fluid flow, rock properties, and many other topics that are encountered every day. New updated material covers topics that have emerged in the petrochemical industry since 1997. - Contains information and calculations that the engineer or geologist must use in daily activities to find oil and devise a plan to get it out of the ground - Filled with problems and solutions, perfect for use in undergraduate, graduate, or professional courses - Covers real-life problems and cases for the practicing engineer
The need for this book has arisen from demand for a current text from our students in Petroleum Engineering at Imperial College and from post-experience Short Course students. It is, however, hoped that the material will also be of more general use to practising petroleum engineers and those wishing for aa introduction into the specialist literature. The book is arranged to provide both background and overview into many facets of petroleum engineering, particularly as practised in the offshore environments of North West Europe. The material is largely based on the authors' experience as teachers and consultants and is supplemented by worked problems where they are believed to enhance understanding. The authors would like to express their sincere thanks and appreciation to all the people who have helped in the preparation of this book by technical comment and discussion and by giving permission to reproduce material. In particular we would like to thank our present colleagues and students at Imperial College and at ERC Energy Resource Consultants Ltd. for their stimulating company, Jill and Janel for typing seemingly endless manuscripts; Dan Smith at Graham and Trotman Ltd. for his perseverence and optimism; and Lesley and Joan for believing that one day things would return to normality. John S. Archer and Colin G. Wall 1986 ix Foreword Petroleum engineering has developed as an area of study only over the present century. It now provides the technical basis for the exploitation of petroleum fluids in subsurface sedimentary rock reservoirs.