With an emphasis on numerical modeling, Physics of the Sun: A First Course presents a quantitative examination of the physical structure of the Sun and the conditions of its extended atmosphere. It gives step-by-step instructions for calculating the numerical values of various physical quantities.The text covers a wide range of topics on the Sun an
The Sun as a Guide to Stellar Physics illustrates the significance of the Sun in understanding stars through anexamination of the discoveries and insights gained from solar physics research. Ranging from theories to modelingand from numerical simulations to instrumentation and data processing, the book provides an overview of whatwe currently understand and how the Sun can be a model for gaining further knowledge about stellar physics.Providing both updates on recent developments in solar physics and applications to stellar physics, this bookstrengthens the solar–stellar connection and summarizes what we know about the Sun for the stellar, space, andgeophysics communities. - Applies observations, theoretical understanding, modeling capabilities and physical processes first revealed by the sun to the study of stellar physics - Illustrates how studies of Proxima Solaris have led to progress in space science, stellar physics and related fields - Uses characteristics of solar phenomena as a guide for understanding the physics of stars
A thorough introduction to solar physics based on recent spacecraft observations. The author introduces the solar corona and sets it in the context of basic plasma physics before moving on to discuss plasma instabilities and plasma heating processes. The latest results on coronal heating and radiation are presented. Spectacular phenomena such as solar flares and coronal mass ejections are described in detail, together with their potential effects on the Earth.
This volume covers most areas in the physics of the solar system, with special emphasis on gravitational dynamics; its gist is the rational, in particular mathematical, understanding of the main processes at work. Special stress is given to the variety of objects in the planetary system and their long-term evolution. The unique character of this book is its breadth and depth, which aims at bringing the reader to the threshold of original research; however, special chapters and introductory sections are included for the benefit of the beginner. The volume is generally suitable for post-graduate students and researchers in physics, especially in the field related to the solar system. A large amount of figures and diagrams is included, often compiled with real data.
Early Solar Physics reviews developments in solar physics, particularly the advent of solar spectroscopy and the discovery of relationships between the various layers of the solar atmosphere and between the different forms of solar activity. Topics covered include solar observations during 1843; chemical analysis of the solar atmosphere; the spectrum of a solar prominence; and the solar eclipse of December 12, 1871. Spectroscopic observations of the sun are also presented. This book is comprised of 30 chapters and begins with an overview of ideas about the sun in the mid-nineteenth century, followed by a summary of progress in astronomy between 1850 and 1900, including observations of the solar surface, sunspots, and solar flares. The founding of the Mount Wilson Solar Observatory is cited. Observations of the sun made with solar spectroscopy are presented, including those of the sun's temperature. The results of a detailed examination of spectra photographed during the solar eclipse of January 22, 1898 are also discussed. The final chapter examines the magnetic properties of the earth and sun. This monograph will be a useful resource for astronomers, astrophysicists, and those interested in discovering many aspects of the sun.
This volume has grown out of lectures addressing primarily graduate students and researchers working in related areas in both astrophysics and space sciences. All contributions are self-contained and do not require prior in-depth knowledge of solar physics. The result is a unique textbook that fulfills the needs of those wishing to have a pedagogic exposition of solar physics bringing them up-to-date in a field full of vitality and with exciting research.
This is a follow-on book to the introductory textbook "Physics of the Solar Corona" previously published in 2004 by the same author, which provided a systematic introduction and covered mostly scientific results from the pre-2000 era. Using a similar structure as the previous book the second volume provides a seamless continuation of numerous novel research results in solar physics that emerged in the new millennium (after 2000) from the new solar missions of RHESSI, STEREO, Hinode, CORONAS, and the Solar Dynamics Observatory (SDO) during the era of 2000-2018. The new solar space missions are characterized by unprecedented high-resolution imaging, time resolution, spectral capabilities, stereoscopy and tomography, which reveal the intricate dynamics of magneto-hydrodynamic processes in the solar corona down to scales of 100 km. The enormous amount of data streaming down from SDO in Terabytes per day requires advanced automated data processing methods. The book focuses exclusively on new research results after 2000, which are reviewed in a comprehensive manner, documented by over 3600 literature references, covering theory, observations, and numerical modeling of basic physical processes that are observed in high-temperature plasmas of the Sun and other astrophysical objects, such as plasma instabilities, coronal heating, magnetic reconnection processes, coronal mass ejections, plasma waves and oscillations, or particle acceleration.
How physicists are trying to solve our energy problems—by unlocking the secrets of the sun: “Explain[s] cutting-edge science with remarkable lucidity.” —Booklist This revelatory book tells the story of the scientists who believe the solution to the planet’s ills can be found in the original energy source: the Sun itself. There, at its center, the fusion of 620 million tons of hydrogen every second generates an unfathomable amount of energy. By replicating even a tiny piece of the Sun’s power on Earth, we can secure all the heat and energy we would ever need. The simple yet extraordinary ambition of nuclear-fusion scientists has garnered many skeptics, but, as A Piece of the Sun makes clear, large-scale nuclear fusion is scientifically possible—and perhaps even preferable to other options. Clery argues passionately and eloquently that the only thing keeping us from harnessing this cheap, clean and renewable energy is our own shortsightedness. “Surprisingly sprightly…Clery walks readers through the history of fusion study, from Lord Kelvin, Albert Einstein and a large cast of peculiar physicists, to all manner of international politics—e.g., the darts and feints of the Cold War, the braces applied by OPEC in the wake of the 1973 war among Israel, Egypt and Syria. Clery negotiates the hard science with aplomb.” —Kirkus Reviews “A timely perspective on truly urgent science.” —Booklist “Ultimately, Clery argues that developing a source of energy that won’t damage the climate—or ever run out—is worth striving for.” —Publishers Weekly