The Physics of Explosive Volcanic Eruptions includes seven review papers that outline our current understanding of several aspects of the physical processes affecting magma during volcanic eruptions. An introductory chapter highlights research areas where our understanding is incomplete, or even completely lacking, and where work needs advancing if our knowledge of volcanic processes is to be substantially improved. The book covers topics on the physical properties of silicic magma, vesiculation processes, conduit flow and fragmentation, gas loss from magmas during eruption, models of volcanic eruption columns, tephra dispersal and pyroclastic density currents.
Understanding the physical behavior of volcanoes is key to mitigating the hazards active volcanoes pose to the ever-increasing populations living nearby. The processes involved in volcanic eruptions are driven by a series of interlinked physical phenomena, and to fully understand these, volcanologists must employ various physics subdisciplines. This book provides the first advanced-level, one-stop resource examining the physics of volcanic behavior and reviewing the state-of-the-art in modeling volcanic processes. Each chapter begins by explaining simple modeling formulations and progresses to present cutting-edge research illustrated by case studies. Individual chapters cover subsurface magmatic processes through to eruption in various environments and conclude with the application of modeling to understanding the other volcanic planets of our Solar System. Providing an accessible and practical text for graduate students of physical volcanology, this book is also an important resource for researchers and professionals in the fields of volcanology, geophysics, geochemistry, petrology and natural hazards.
Volcanic eruptions are common, with more than 50 volcanic eruptions in the United States alone in the past 31 years. These eruptions can have devastating economic and social consequences, even at great distances from the volcano. Fortunately many eruptions are preceded by unrest that can be detected using ground, airborne, and spaceborne instruments. Data from these instruments, combined with basic understanding of how volcanoes work, form the basis for forecasting eruptionsâ€"where, when, how big, how long, and the consequences. Accurate forecasts of the likelihood and magnitude of an eruption in a specified timeframe are rooted in a scientific understanding of the processes that govern the storage, ascent, and eruption of magma. Yet our understanding of volcanic systems is incomplete and biased by the limited number of volcanoes and eruption styles observed with advanced instrumentation. Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing identifies key science questions, research and observation priorities, and approaches for building a volcano science community capable of tackling them. This report presents goals for making major advances in volcano science.
A summary of insights into key aspects of explosive volcanic eruptions, arranged into chapters in order of the processes involved, from the hot magma releasing gases as it rises through the Earth's crust to the final deposition of materials upon the Earth's surface.
What does it take for a volcanic eruption to really shake the world? Did volcanic eruptions extinguish the dinosaurs, or help humans to evolve, only to decimate their populations with a super-eruption 73,000 years ago? Did they contribute to the ebb and flow of ancient empires, the French Revolution and the rise of fascism in Europe in the 19th century? These are some of the claims made for volcanic cataclysm. Volcanologist Clive Oppenheimer explores rich geological, historical, archaeological and palaeoenvironmental records (such as ice cores and tree rings) to tell the stories behind some of the greatest volcanic events of the past quarter of a billion years. He shows how a forensic approach to volcanology reveals the richness and complexity behind cause and effect, and argues that important lessons for future catastrophe risk management can be drawn from understanding events that took place even at the dawn of human origins.
Fundamentals of Physical Volcanology is a comprehensive overview ofthe processes that control when and how volcanoes erupt.Understanding these processes involves bringing together ideas froma number of disciplines, including branches of geology, such aspetrology and geochemistry; and aspects of physics, such as fluiddynamics and thermodynamics. This book explains in accessible terms how different areas ofscience have been combined to reach our current level of knowledgeof volcanic systems. It includes an introduction to eruption types,an outline of the development of physical volcanology, acomprehensive overview of subsurface processes, eruptionmechanisms, the nature of volcanic eruptions and their products,and a review of how volcanoes affect the environment. Fundamentals of Physical Volcanology is essential reading forundergraduate students in earth science.
Presents the book "Basaltic Volcanism on the Terrestrial Planets," (ISBN 0-08-028086-2), written by members of the Basaltic Volcanism Study Project of the Lunar and Planetary Institute in Houston, Texas. Examines basaltic volcanism as a stage in planetary evolution.
Volcanoes are essential elements in the delicate global balance of elemental forces that govern both the dynamic evolution of the Earth and the nature of Life itself. Without volcanic activity, life as we know it would not exist on our planet. Although beautiful to behold, volcanoes are also potentially destructive, and understanding their nature is critical to prevent major loss of life in the future. Richly illustrated with over 300 original color photographs and diagrams the book is written in an informal manner, with minimum use of jargon, and relies heavily on first-person, eye-witness accounts of eruptive activity at both "red" (effusive) and "grey" (explosive) volcanoes to illustrate the full spectrum of volcanic processes and their products. Decades of teaching in university classrooms and fieldwork on active volcanoes throughout the world have provided the authors with unique experiences that they have distilled into a highly readable textbook of lasting value. Questions for Thought, Study, and Discussion, Suggestions for Further Reading, and a comprehensive list of source references make this work a major resource for further study of volcanology. Volcanoes maintains three core foci: Global perspectives explain volcanoes in terms of their tectonic positions on Earth and their roles in earth history Environmental perspectives describe the essential role of volcanism in the moderation of terrestrial climate and atmosphere Humanitarian perspectives discuss the major influences of volcanoes on human societies. This latter is especially important as resource scarcities and environmental issues loom over our world, and as increasing numbers of people are threatened by volcanic hazards Readership Volcanologists, advanced undergraduate, and graduate students in earth science and related degree courses, and volcano enthusiasts worldwide. A companion website is also available for this title at www.wiley.com/go/lockwood/volcanoes
An exhilarating, time-traveling journey to the solar system’s strangest and most awe-inspiring volcanoes. Volcanoes are capable of acts of pyrotechnical prowess verging on magic: they spout black magma more fluid than water, create shimmering cities of glass at the bottom of the ocean and frozen lakes of lava on the moon, and can even tip entire planets over. Between lava that melts and re-forms the landscape, and noxious volcanic gases that poison the atmosphere, volcanoes have threatened life on Earth countless times in our planet’s history. Yet despite their reputation for destruction, volcanoes are inseparable from the creation of our planet. A lively and utterly fascinating guide to these geologic wonders, Super Volcanoes revels in the incomparable power of volcanic eruptions past and present, Earthbound and otherwise—and recounts the daring and sometimes death-defying careers of the scientists who study them. Science journalist and volcanologist Robin George Andrews explores how these eruptions reveal secrets about the worlds to which they belong, describing the stunning ways in which volcanoes can sculpt the sea, land, and sky, and even influence the machinery that makes or breaks the existence of life. Walking us through the mechanics of some of the most infamous eruptions on Earth, Andrews outlines what we know about how volcanoes form, erupt, and evolve, as well as what scientists are still trying to puzzle out. How can we better predict when a deadly eruption will occur—and protect communities in the danger zone? Is Earth’s system of plate tectonics, unique in the solar system, the best way to forge a planet that supports life? And if life can survive and even thrive in Earth’s extreme volcanic environments—superhot, superacidic, and supersaline surroundings previously thought to be completely inhospitable—where else in the universe might we find it? Traveling from Hawai‘i, Yellowstone, Tanzania, and the ocean floor to the moon, Venus, and Mars, Andrews illuminates the cutting-edge discoveries and lingering scientific mysteries surrounding these phenomenal forces of nature.