The Physics of Astrophysics: Gas dynamics

The Physics of Astrophysics: Gas dynamics

Author: Frank H. Shu

Publisher: University Science Books

Published: 1991

Total Pages: 508

ISBN-13: 9780935702651

DOWNLOAD EBOOK

This two-volume text is for new graduates on astronomy courses who need to get to grips with the physics involved in the subject. Four problem sets, averaging three problems per set, accompany each volume. The problems expand on the material covered in the texts and represent the level of calculational skill needed to write scientific papers in contemporary astrophysics.


Gas Dynamics

Gas Dynamics

Author: Abraham Achterberg

Publisher: Springer

Published: 2016-06-20

Total Pages: 391

ISBN-13: 9462391955

DOWNLOAD EBOOK

This book lays the foundations of gas- and fluid dynamics.The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.


Principles of Astrophysical Fluid Dynamics

Principles of Astrophysical Fluid Dynamics

Author: Cathie Clarke

Publisher: Cambridge University Press

Published: 2007-03-08

Total Pages: 239

ISBN-13: 0521853311

DOWNLOAD EBOOK

An advanced textbook on AFD introducing astrophysics students to the necessary fluid dynamics, first published in 2007.


The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas

Author: Arnab Rai Choudhuri

Publisher: Cambridge University Press

Published: 1998-11-26

Total Pages: 452

ISBN-13: 9780521555432

DOWNLOAD EBOOK

A good working knowledge of fluid mechanics and plasma physics is essential for the modern astrophysicist. This graduate textbook provides a clear, pedagogical introduction to these core subjects. Assuming an undergraduate background in physics, this book develops fluid mechanics and plasma physics from first principles. This book is unique because it presents neutral fluids and plasmas in a unified scheme, clearly indicating both their similarities and their differences. Also, both the macroscopic (continuum) and microscopic (particle) theories are developed, establishing the connections between them. Throughout, key examples from astrophysics are used, though no previous knowledge of astronomy is assumed. Exercises are included at the end of chapters to test the reader's understanding. This textbook is aimed primarily at astrophysics graduate students. It will also be of interest to advanced students in physics and applied mathematics seeking a unified view of fluid mechanics and plasma physics, encompassing both the microscopic and macroscopic theories.


Fundamentals of Astrophysical Fluid Dynamics

Fundamentals of Astrophysical Fluid Dynamics

Author: Shoji Kato

Publisher: Springer Nature

Published: 2020-06-19

Total Pages: 635

ISBN-13: 9811541744

DOWNLOAD EBOOK

This book offers an overview of the fundamental dynamical processes, which are necessary to understand astrophysical phenomena, from the viewpoint of hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics. The book consists of three parts: The first discusses the fundamentals of hydrodynamics necessary to understand the dynamics of astrophysical objects such as stars, interstellar gases and accretion disks. The second part reviews the interactions between gases and magnetic fields on fluid motions – the magnetohydrodynamics – highlighting the important role of magnetic fields in dynamical phenomena under astrophysical environments. The third part focuses on radiation hydrodynamics, introducing the hydrodynamic phenomena characterized by the coupling of radiation and gas motions and further on relativistic radiation hydrodynamics. Intended as a pedagogical introduction for advanced undergraduate and graduate students, it also provides comprehensive coverage of the fundamentals of astrophysical fluid dynamics, making it an effective resource not only for graduate courses, but also for beginners wanting to learn about hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics in astrophysics independently.


Accretion Power in Astrophysics

Accretion Power in Astrophysics

Author: Juhan Frank

Publisher: Cambridge University Press

Published: 2002-01-17

Total Pages: 390

ISBN-13: 9780521629577

DOWNLOAD EBOOK

Accretion Power in Astrophysics examines accretion as a source of energy in both binary star systems containing compact objects, and in active galactic nuclei. Assuming a basic knowledge of physics, the authors describe the physical processes at work in accretion discs and other accretion flows. The first three chapters explain why accretion is a source of energy, and then present the gas dynamics and plasma concepts necessary for astrophysical applications. The next three chapters then develop accretion in stellar systems, including accretion onto compact objects. Further chapters give extensive treatment of accretion in active galactic nuclei, and describe thick accretion discs. A new chapter discusses recently discovered accretion flow solutions. The third edition is greatly expanded and thoroughly updated. New material includes a detailed treatment of disc instabilities, irradiated discs, disc warping, and general accretion flows. The treatment is suitable for advanced undergraduates, graduate students and researchers.


The Physical Universe

The Physical Universe

Author: Frank Shu

Publisher: University Science Books

Published: 1982

Total Pages: 610

ISBN-13: 9780935702057

DOWNLOAD EBOOK

"This is a truly astonishing book, invaluable for anyone with an interest in astronomy." Physics Bulletin "Just the thing for a first year university science course." Nature "This is a beautiful book in both concept and execution." Sky & Telescope


Dynamics and Evolution of Galactic Nuclei

Dynamics and Evolution of Galactic Nuclei

Author: David Merritt

Publisher: Princeton University Press

Published: 2013-07-21

Total Pages: 567

ISBN-13: 1400846129

DOWNLOAD EBOOK

Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the last three decades on the evolution of galactic nuclei, the formation of massive black holes, and the interaction between black holes and stars. He explores in depth such important topics as observations of galactic nuclei, dynamical models, weighing black holes, motion near supermassive black holes, evolution of nuclei due to gravitational encounters, loss cone theory, and binary supermassive black holes. Self-contained and up-to-date, the textbook includes a summary of the current literature and previously unpublished work by the author. For researchers working on active galactic nuclei, galaxy evolution, and the generation of gravitational waves, this book will be an essential resource.


Physics of the Interstellar and Intergalactic Medium

Physics of the Interstellar and Intergalactic Medium

Author: Bruce T. Draine

Publisher: Princeton University Press

Published: 2010-12-20

Total Pages: 560

ISBN-13: 1400839084

DOWNLOAD EBOOK

This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium; and star formation. While it is assumed that the reader has a background in undergraduate-level physics, including some prior exposure to atomic and molecular physics, statistical mechanics, and electromagnetism, the first six chapters of the book include a review of the basic physics that is used in later chapters. This graduate-level textbook includes references for further reading, and serves as an invaluable resource for working astrophysicists. Essential textbook on the physics of the interstellar and intergalactic medium Based on a course taught by the author for more than twenty years at Princeton University Covers radiative processes, fluid dynamics, cosmic rays, astrochemistry, interstellar dust, and more Discusses the physical state and distribution of the ionized, atomic, and molecular phases of the interstellar medium Reviews diagnostics using emission and absorption lines Features color illustrations and detailed reference materials in appendices Instructor's manual with problems and solutions (available only to teachers)


Introduction to High-Energy Astrophysics

Introduction to High-Energy Astrophysics

Author: Stephan Rosswog

Publisher: Cambridge University Press

Published: 2011-03-03

Total Pages: 366

ISBN-13: 9780521674423

DOWNLOAD EBOOK

High-energy astrophysics covers cosmic phenomena that occur under the most extreme physical conditions. It explores the most violent events in the Universe: the explosion of stars, matter falling into black holes, and gamma-ray bursts - the most luminous explosions since the Big Bang. Driven by a wealth of observations, there has been a large leap forward in our understanding of these phenomena. Exploring modern topics of high-energy astrophysics, such as supernovae, neutron stars, compact binary systems, gamma-ray bursts, and active galactic nuclei, this 2007 textbook is ideal for undergraduate students in high-energy astrophysics. It is a self-contained, relevant overview of this exciting field of research. Assuming a familiarity with basic physics, it introduces all other concepts, such as gas dynamics or radiation processes, in an instructive way. An extended appendix gives an overview of some of the most important high-energy astrophysics instruments, and each chapter ends with exercises.