This book provides the first comprehensive critical survey of the microstructural characteristics of liquid metals which determine properties of viscosity, surface tension, density, heat capacity, thermal conductivity, electrical resistivity, diffusion, and velocity of sound transmission. The experimental techniques used to obtain these data are also reviewed. The result is a valuable set of correlations and reference data which enable the reader to understand the basic phenomena underlying the properties of liquid metals. As such, the book will be invaluable for metallurgists and materials engineers working in this area.
This book discusses the core principles and practical applications of a brand new machine category: liquid-metal soft machines and motors. After a brief introduction on the conventional soft robot and its allied materials, it presents the new conceptual liquid-metal machine, which revolutionizes existing rigid robots, both large and small. It outlines the typical features of the soft liquid-metal materials and describes the various transformation capabilities, mergence of separate metal droplets, self-rotation and planar locomotion of liquid-metal objects under external or internal mechanism. Further, it introduces a series of unusual phenomena discovered while developing the shape changeable smart soft machine and interprets the related mechanisms regarding the effects of the shape, size, voltage, orientation and geometries of the external fields to control the liquid-metal transformers. Moreover, the book illustrates typical strategies to construct a group of different advanced functional liquid-metal soft machines, since such machines or robots are hard to fabricate using rigid-metal or conventional materials. With highly significant fundamental and practical findings, this book is intended for researchers interested in establishing a general method for making future smart soft machine and accompanying robots.
This book provides numerical data on physical and thermodynamic properties of a large number of elements and compounds. SI units are used throughout, and in addition, an adequate set of conversion tables is included. This volume will be a valuable source of reference for physical chemists and chemical engineers.
This 1972 book brings together the results of a decade of research into the physics of liquid metals and alloys, a subject of growing interest to physicists, metallurgists and materials scientists at the time. It covers a wide range of phenomena, and for the benefit of newcomers to the field, Dr Faber provides a clear exposition of the physical properties involved, and the relevant theoretical arguments are developed in sufficient detail for an experimentalist who carries rather little in the way of mathematical equipment to follow them. Experienced researchers will appreciate Dr Faber's critical approach and the many previously unpublished results which he has included. The mass of experimental data which he has brought together and the comprehensive bibliography will make the book of great use to readers of both classes.
An up-to-date exploration of the properties and most recent applications of liquid metals In Liquid Metal: Properties, Mechanisms, and Applications, a pair of distinguished researchers delivers a comprehensive exploration of liquid metals with a strong focus on their structure and physicochemical properties, preparation methods, and tuning strategies. The book also illustrates the applications of liquid metals in fields as varied as mediated synthesis, 3D printing, flexible electronics, biomedicine, energy storage, and energy conversion. The authors include coverage of reactive mediums for synthesizing and assembling nanomaterials and direct-writing electronics, and the book offers access to supplementary video materials to highlight the concepts discussed within. Recent advancements in the field of liquid metals are also discussed, as are new opportunities for research and development in this rapidly developing area. The book also includes: A thorough introduction to the fundamentals of liquid metal, including a history of its discovery, its structure and physical properties, and its preparation Comprehensive explorations of the external field tuning of liquid metal, including electrical, magnetic, and chemical tuning Practical discussions of liquid metal as a new reaction medium, including nanomaterial synthesis and alloy preparation In-depth examinations of constructing techniques of liquid metal-based architectures, including injection, imprinting, and mask-assisted depositing Perfect for materials scientists, electrochemists, and catalytic chemists, Liquid Metal: Properties, Mechanisms, and Applications also belongs in the libraries of inorganic chemists, electronics engineers, and biochemists.
This handbook systematically collects the latest scientific and technological knowledge on liquid metals obtained so far in this cutting edge frontier. Conventional materials such as metals, polymers, composites, ceramics and naturally derived matters, may not perform well when facing certain technological challenges. At around room temperature, most of such materials mainly stay at solid state and are often difficult to shape due to their high melting point. Meanwhile, although classical soft matters own good flexibility, their electrical conductivities including more behaviours appear not good enough which generally limited their utilizations. As a game-changing alternative, the room temperature liquid metal materials are quickly emerging as a new generation functional material which displayed many unconventional properties superior to traditional materials. Their outstanding versatile feature as “One material, diverse capabilities” is rather unique among existing materials and thus opens many exciting opportunities for scientific, technological and industrial developments. This handbook presents comprehensive reference information on liquid metal science and technology that are currently available. The major advancements as made before are collected and summarized. Representative liquid metal applications are illustrated. It helps readers obtain a comprehensive understanding of the technical progresses and fundamental discoveries in the frontier, and thus better explore and utilize liquid metal materials to address various challenging needs.
Deep Earth: Physics and Chemistry of the Lower Mantle and Core highlights recent advances and the latest views of the deep Earth from theoretical, experimental, and observational approaches and offers insight into future research directions on the deep Earth. In recent years, we have just reached a stage where we can perform measurements at the conditions of the center part of the Earth using state-of-the-art techniques, and many reports on the physical and chemical properties of the deep Earth have come out very recently. Novel theoretical models have been complementary to this breakthrough. These new inputs enable us to compare directly with results of precise geophysical and geochemical observations. This volume highlights the recent significant advancements in our understanding of the deep Earth that have occurred as a result, including contributions from mineral/rock physics, geophysics, and geochemistry that relate to the topics of: I. Thermal structure of the lower mantle and core II. Structure, anisotropy, and plasticity of deep Earth materials III. Physical properties of the deep interior IV. Chemistry and phase relations in the lower mantle and core V. Volatiles in the deep Earth The volume will be a valuable resource for researchers and students who study the Earth's interior. The topics of this volume are multidisciplinary, and therefore will be useful to students from a wide variety of fields in the Earth Sciences.
Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge. - Presents the latest information on one of the deliverables of the SESAME H2020 project - Provides an overview on the design and history of liquid metal cooled fast reactors worldwide - Describes the challenges in thermal hydraulics related to the design and safety analysis of liquid metal cooled fast reactors - Includes the codes, methods, correlations, guidelines and limitations for liquid metal fast reactor thermal hydraulic simulations clearly - Discusses state-of-the-art, multi-scale techniques for liquid metal fast reactor thermal hydraulics applications
The book gives an understanding on how thermophysical properties change as function of alloy composition and complexity. In order to reach this goal, data on density, surface tension, and viscosity as functions of alloy composition and temperature are measured and discussed for pure liquid elements, liquid binary-, and ternary alloys.