The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness

The Partial Regularity Theory of Caffarelli, Kohn, and Nirenberg and its Sharpness

Author: Wojciech S. Ożański

Publisher: Springer Nature

Published: 2019-09-16

Total Pages: 142

ISBN-13: 3030266613

DOWNLOAD EBOOK

This monograph focuses on the partial regularity theorem, as developed by Caffarelli, Kohn, and Nirenberg (CKN), and offers a proof of the upper bound on the Hausdorff dimension of the singular set of weak solutions of the Navier-Stokes inequality, while also providing a clear and insightful presentation of Scheffer’s constructions showing their bound cannot be improved. A short, complete, and self-contained proof of CKN is presented in the second chapter, allowing the remainder of the book to be fully dedicated to a topic of central importance: the sharpness result of Scheffer. Chapters three and four contain a highly readable proof of this result, featuring new improvements as well. Researchers in mathematical fluid mechanics, as well as those working in partial differential equations more generally, will find this monograph invaluable.


Mathematical Analysis of the Navier-Stokes Equations

Mathematical Analysis of the Navier-Stokes Equations

Author: Matthias Hieber

Publisher: Springer Nature

Published: 2020-04-28

Total Pages: 471

ISBN-13: 3030362264

DOWNLOAD EBOOK

This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier–Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude). The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H∞-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier–Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier–Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier–Stokes equations with and without surface tension. Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier–Stokes equations.


Proceedings of the St. Petersburg Mathematical Society, Volume XV

Proceedings of the St. Petersburg Mathematical Society, Volume XV

Author: Darya Apushkinskaya

Publisher: American Mathematical Society

Published: 2014-08-22

Total Pages: 282

ISBN-13: 1470415518

DOWNLOAD EBOOK

This book presents the proceedings of the international workshop, "Advances in Mathematical Analysis of Partial Differential Equations" held at the Institut Mittag-Leffler, Stockholm, Sweden, July 9-13, 2012, dedicated to the memory of the outstanding Russian mathematician Olga A. Ladyzhenskaya. The volume contains papers that engage a wide set of modern topics in the theory of linear and nonlinear partial differential equations and applications, including variational and free boundary problems, mathematical problems of hydrodynamics, and magneto-geostrophic equations.


Numerical Mathematics and Advanced Applications

Numerical Mathematics and Advanced Applications

Author: Alfredo Bermúdez de Castro

Publisher: Springer Science & Business Media

Published: 2007-10-08

Total Pages: 1202

ISBN-13: 3540342885

DOWNLOAD EBOOK

These proceedings collect lectures given at ENUMATH 2005, the 6th European Conference on Numerical Mathematics and Advanced Applications held in Santiago de Compostela, Spain in July, 2005. Topics include applications such as fluid dynamics, electromagnetism, structural mechanics, interface problems, waves, finance, heat transfer, unbounded domains, numerical linear algebra, convection-diffusion, as well as methodologies such as a posteriori error estimates, discontinuous Galerkin methods, multiscale methods, optimization, and more.


Mathematical Analysis in Fluid Mechanics

Mathematical Analysis in Fluid Mechanics

Author: Raphaël Danchin

Publisher: American Mathematical Soc.

Published: 2018-06-26

Total Pages: 254

ISBN-13: 1470436469

DOWNLOAD EBOOK

This volume contains the proceedings of the International Conference on Vorticity, Rotation and Symmetry (IV)—Complex Fluids and the Issue of Regularity, held from May 8–12, 2017, in Luminy, Marseille, France. The papers cover topics in mathematical fluid mechanics ranging from the classical regularity issue for solutions of the 3D Navier-Stokes system to compressible and non-Newtonian fluids, MHD flows and mixtures of fluids. Topics of different kinds of solutions, boundary conditions, and interfaces are also discussed.


The Abel Prize 2013-2017

The Abel Prize 2013-2017

Author: Helge Holden

Publisher: Springer

Published: 2019-02-23

Total Pages: 762

ISBN-13: 3319990284

DOWNLOAD EBOOK

The book presents the winners of the Abel Prize in mathematics for the period 2013–17: Pierre Deligne (2013); Yakov G. Sinai (2014); John Nash Jr. and Louis Nirenberg (2015); Sir Andrew Wiles (2016); and Yves Meyer (2017). The profiles feature autobiographical information as well as a scholarly description of each mathematician’s work. In addition, each profile contains a Curriculum Vitae, a complete bibliography, and the full citation from the prize committee. The book also includes photos for the period 2003–2017 showing many of the additional activities connected with the Abel Prize. As an added feature, video interviews with the Laureates as well as videos from the prize ceremony are provided at an accompanying website (http://extras.springer.com/). This book follows on The Abel Prize: 2003-2007. The First Five Years (Springer, 2010) and The Abel Prize 2008-2012 (Springer 2014), which profile the work of the previous Abel Prize winners.


An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs

An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs

Author: Mariano Giaquinta

Publisher: Springer Science & Business Media

Published: 2013-07-30

Total Pages: 373

ISBN-13: 8876424431

DOWNLOAD EBOOK

This volume deals with the regularity theory for elliptic systems. We may find the origin of such a theory in two of the problems posed by David Hilbert in his celebrated lecture delivered during the International Congress of Mathematicians in 1900 in Paris: 19th problem: Are the solutions to regular problems in the Calculus of Variations always necessarily analytic? 20th problem: does any variational problem have a solution, provided that certain assumptions regarding the given boundary conditions are satisfied, and provided that the notion of a solution is suitably extended? During the last century these two problems have generated a great deal of work, usually referred to as regularity theory, which makes this topic quite relevant in many fields and still very active for research. However, the purpose of this volume, addressed mainly to students, is much more limited. We aim to illustrate only some of the basic ideas and techniques introduced in this context, confining ourselves to important but simple situations and refraining from completeness. In fact some relevant topics are omitted. Topics include: harmonic functions, direct methods, Hilbert space methods and Sobolev spaces, energy estimates, Schauder and L^p-theory both with and without potential theory, including the Calderon-Zygmund theorem, Harnack's and De Giorgi-Moser-Nash theorems in the scalar case and partial regularity theorems in the vector valued case; energy minimizing harmonic maps and minimal graphs in codimension 1 and greater than 1. In this second deeply revised edition we also included the regularity of 2-dimensional weakly harmonic maps, the partial regularity of stationary harmonic maps, and their connections with the case p=1 of the L^p theory, including the celebrated results of Wente and of Coifman-Lions-Meyer-Semmes.


Recent developments in the Navier-Stokes problem

Recent developments in the Navier-Stokes problem

Author: Pierre Gilles Lemarie-Rieusset

Publisher: CRC Press

Published: 2002-04-26

Total Pages: 412

ISBN-13: 9781420035674

DOWNLOAD EBOOK

The Navier-Stokes equations: fascinating, fundamentally important, and challenging,. Although many questions remain open, progress has been made in recent years. The regularity criterion of Caffarelli, Kohn, and Nirenberg led to many new results on existence and non-existence of solutions, and the very active search for mild solutions in the 1990's culminated in the theorem of Koch and Tataru that, in some ways, provides a definitive answer. Recent Developments in the Navier-Stokes Problem brings these and other advances together in a self-contained exposition presented from the perspective of real harmonic analysis. The author first builds a careful foundation in real harmonic analysis, introducing all the material needed for his later discussions. He then studies the Navier-Stokes equations on the whole space, exploring previously scattered results such as the decay of solutions in space and in time, uniqueness, self-similar solutions, the decay of Lebesgue or Besov norms of solutions, and the existence of solutions for a uniformly locally square integrable initial value. Many of the proofs and statements are original and, to the extent possible, presented in the context of real harmonic analysis. Although the existence, regularity, and uniqueness of solutions to the Navier-Stokes equations continue to be a challenge, this book is a welcome opportunity for mathematicians and physicists alike to explore the problem's intricacies from a new and enlightening perspective.