Deep-time Perspectives on Climate Change
Author: Mark Williams
Publisher: Geological Society of London
Published: 2007
Total Pages: 604
ISBN-13: 9781862392403
DOWNLOAD EBOOKRead and Download eBook Full
Author: Mark Williams
Publisher: Geological Society of London
Published: 2007
Total Pages: 604
ISBN-13: 9781862392403
DOWNLOAD EBOOKAuthor: National Research Council
Publisher: National Academies Press
Published: 2011-08-02
Total Pages: 153
ISBN-13: 0309209196
DOWNLOAD EBOOKThere is little dispute within the scientific community that humans are changing Earth's climate on a decadal to century time-scale. By the end of this century, without a reduction in emissions, atmospheric CO2 is projected to increase to levels that Earth has not experienced for more than 30 million years. As greenhouse gas emissions propel Earth toward a warmer climate state, an improved understanding of climate dynamics in warm environments is needed to inform public policy decisions. In Understanding Earth's Deep Past, the National Research Council reports that rocks and sediments that are millions of years old hold clues to how the Earth's future climate would respond in an environment with high levels of atmospheric greenhouse gases. Understanding Earth's Deep Past provides an assessment of both the demonstrated and underdeveloped potential of the deep-time geologic record to inform us about the dynamics of the global climate system. The report describes past climate changes, and discusses potential impacts of high levels of atmospheric greenhouse gases on regional climates, water resources, marine and terrestrial ecosystems, and the cycling of life-sustaining elements. While revealing gaps in scientific knowledge of past climate states, the report highlights a range of high priority research issues with potential for major advances in the scientific understanding of climate processes. This proposed integrated, deep-time climate research program would study how climate responded over Earth's different climate states, examine how climate responds to increased atmospheric carbon dioxide and other greenhouse gases, and clarify the processes that lead to anomalously warm polar and tropical regions and the impact on marine and terrestrial life. In addition to outlining a research agenda, Understanding Earth's Deep Past proposes an implementation strategy that will be an invaluable resource to decision-makers in the field, as well as the research community, advocacy organizations, government agencies, and college professors and students.
Author: Juan A. Blanco
Publisher: BoD – Books on Demand
Published: 2011-09-12
Total Pages: 538
ISBN-13: 9533074191
DOWNLOAD EBOOKThis book offers an interdisciplinary view of the biophysical issues related to climate change. Climate change is a phenomenon by which the long-term averages of weather events (i.e. temperature, precipitation, wind speed, etc.) that define the climate of a region are not constant but change over time. There have been a series of past periods of climatic change, registered in historical or paleoecological records. In the first section of this book, a series of state-of-the-art research projects explore the biophysical causes for climate change and the techniques currently being used and developed for its detection in several regions of the world. The second section of the book explores the effects that have been reported already on the flora and fauna in different ecosystems around the globe. Among them, the ecosystems and landscapes in arctic and alpine regions are expected to be among the most affected by the change in climate, as they will suffer the more intense changes. The final section of this book explores in detail those issues.
Author: Bärbel Hönisch
Publisher: John Wiley & Sons
Published: 2019-05-13
Total Pages: 241
ISBN-13: 1119010632
DOWNLOAD EBOOKAnthropogenic carbon dioxide emissions do not only warm our planet but also acidify our oceans. It is currently unclear to which degree Earth’s climate and marine life will be impacted by these changes but information from Earth history, particularly the geochemical signals of past environmental changes stored in the fossil remains of marine organisms, can help us predict possible future changes. This book aims to be a primer for scientists who seek to apply boron proxies in marine carbonates to estimate past seawater carbonate chemistry and atmospheric pCO2. Boron proxies (δ11B and B/Ca) were introduced nearly three decades ago, with subsequent strides being made in understanding their mechanistic functioning. This text reviews current knowledge about the aqueous systematics, the inorganic and biological controls on boron isotope fractionation and incorporation into marine carbonates, as well as the analytical techniques for measurement of boron proxies. Laboratory and field calibrations of the boron proxies are summarized, and similarities between modern calibrations are explored to suggest estimates for proxy sensitivities in marine calcifiers that are now extinct. Example applications illustrate the potential for reconstructing paleo-atmospheric pCO2 from boron isotopes. Also explored are the sensitivity of paleo-ocean acidity and pCO2 reconstructions to boron isotope proxy systematics that are currently less well understood, including the elemental and boron isotopic composition of seawater through time, seawater alkalinity, temperature and salinity, and their collective impact on the uncertainty of paleo-reconstructions. The B/Ca proxy is based on the same mechanistic principles as the boron isotope proxy, but empirical calibrations suggest seawater pH is not the only controlling factor. B/Ca therefore has the potential to provide a second carbonate parameter that could be paired with δ11B to fully constrain the ocean carbonate system, but the associated uncertainties are large. This text reviews and examines what is currently known about the B/Ca proxy systematics. As more scientists embark on characterizing past ocean acidity and atmospheric pCO2, Boron in Paleoceanography and Paleoclimatology provides a resource to introduce geoscientists to the opportunities and complications of boron proxies, including potential avenues to further refine them.
Author: Robert A. Berner
Publisher: Oxford University Press
Published: 2004-08-19
Total Pages: 159
ISBN-13: 0195346653
DOWNLOAD EBOOKThe term "carbon cycle" is normally thought to mean those processes that govern the present-day transfer of carbon between life, the atmosphere, and the oceans. This book describes another carbon cycle, one which operates over millions of years and involves the transfer of carbon between rocks and the combination of life, the atmosphere, and the oceans. The weathering of silicate and carbonate rocks and ancient sedimentary organic matter (including recent, large-scale human-induced burning of fossil fuels), the burial of organic matter and carbonate minerals in sediments, and volcanic degassing of carbon dioxide contribute to this cycle. In The Phanerozoic Carbon Cycle, Robert Berner shows how carbon cycle models can be used to calculate levels of atmospheric CO[2 and O[2 over Phanerozoic time, the past 550 million years, and how results compare with independent methods. His analysis has implications for such disparate subjects as the evolution of land plants, the presence of giant ancient insects, the role of tectonics in paleoclimate, and the current debate over global warming and greenhouse gases
Author: Edward J. Carpenter
Publisher: Elsevier
Published: 2013-10-22
Total Pages: 919
ISBN-13: 1483288293
DOWNLOAD EBOOKNitrogen in the Marine Environment provides information pertinent to the many aspects of the nitrogen cycle. This book presents the advances in ocean productivity research, with emphasis on the role of microbes in nitrogen transformations with excursions to higher trophic levels. Organized into 24 chapters, this book begins with an overview of the abundance and distribution of the various forms of nitrogen in a number of estuaries. This text then provides a comparison of the nitrogen cycling of various ecosystems within the marine environment. Other chapters consider chemical distributions and methodology as an aid to those entering the field. This book discusses as well the enzymology of the initial steps of inorganic nitrogen assimilation. The final chapter deals with the philosophy and application of modeling as an investigative method in basic research on nitrogen dynamics in coastal and open-ocean marine environments. This book is a valuable resource for plant biochemists, microbiologists, aquatic ecologists, and bacteriologists.
Author: Trond H. Torsvik
Publisher: Cambridge University Press
Published: 2017
Total Pages: 329
ISBN-13: 1107105323
DOWNLOAD EBOOKThis book provides a complete Phanerozoic story of palaeogeography, using new and detailed full-colour maps, to link surface and deep-Earth processes.
Author: Scott L. Wing
Publisher: Geological Society of America
Published: 2003-01-01
Total Pages: 628
ISBN-13: 9780813723693
DOWNLOAD EBOOKAuthor: Richard E. Ernst
Publisher: Cambridge University Press
Published: 2014-09-25
Total Pages: 667
ISBN-13: 1316060519
DOWNLOAD EBOOKLarge igneous provinces (LIPs) are intraplate magmatic events, involving volumes of mainly mafic magma upwards of 100,000 km3, and often above 1 million km3. They are linked to continental break-up, global environmental catastrophes, regional uplift and a variety of ore deposit types. In this up-to-date, fascinating book, leading expert Richard E. Ernst explores all aspects of LIPs, beginning by introducing their definition and essential characteristics. Topics covered include continental and oceanic LIPs; their origins, structures, and geochemistry; geological and environmental effects; association with silicic, carbonatite and kimberlite magmatism; and analogues of LIPs in the Archean, and on other planets. The book concludes with an assessment of LIPs' influence on natural resources such as mineral deposits, petroleum and aquifers. This is a one-stop resource for researchers and graduate students in a wide range of disciplines, including tectonics, igneous petrology, geochemistry, geophysics, Earth history, and planetary geology, and for mining industry professionals.
Author: David J. Cantrill
Publisher: Cambridge University Press
Published: 2012-11-22
Total Pages: 489
ISBN-13: 113956028X
DOWNLOAD EBOOKThe fossil history of plant life in Antarctica is central to our understanding of the evolution of vegetation through geological time and also plays a key role in reconstructing past configurations of the continents and associated climatic conditions. This book provides the only detailed overview of the development of Antarctic vegetation from the Devonian period to the present day, presenting Earth scientists with valuable insights into the break up of the ancient supercontinent of Gondwana. Details of specific floras and ecosystems are provided within the context of changing geological, geographical and environmental conditions, alongside comparisons with contemporaneous and modern ecosystems. The authors demonstrate how palaeobotany contributes to our understanding of the paleoenvironmental changes in the southern hemisphere during this period of Earth history. The book is a complete and up-to-date reference for researchers and students in Antarctic paleobotany and terrestrial paleoecology.