Surface-Enhanced Vibrational Spectroscopy

Surface-Enhanced Vibrational Spectroscopy

Author: Ricardo Aroca

Publisher: John Wiley & Sons

Published: 2006-05-01

Total Pages: 260

ISBN-13: 9780470035658

DOWNLOAD EBOOK

Surface Enhanced Vibrational Spectroscopy (SEVS) has reached maturity as an analytical technique, but until now there has been no single work that describes the theory and experiments of SEVS. This book combines the two important techniques of surface-enhanced Raman scattering (SERS) and surface-enhanced infrared (SEIR) into one text that serves as the definitive resource on SEVS. Discusses both the theory and the applications of SEVS and provides an up-to-date study of the state of the art Offers interpretations of SEVS spectra for practicing analysts Discusses interpretation of SEVS spectra, which can often be very different to the non-enhanced spectrum - aids the practicing analyst


Atomic Spectra and Atomic Structure

Atomic Spectra and Atomic Structure

Author: Gerhard Herzberg

Publisher: Courier Corporation

Published: 1944-01-01

Total Pages: 292

ISBN-13: 9780486601151

DOWNLOAD EBOOK

For beginners and specialists in other fields: the Nobel Laureate's introduction to atomic spectra and their relationship to atomic structures, stressing basics in a physical, rather than mathematical, treatment. 80 illustrations.


Spectral Line Formation

Spectral Line Formation

Author: John T. Jefferies

Publisher:

Published: 1968

Total Pages: 328

ISBN-13:

DOWNLOAD EBOOK

The purpose of this book is to discuss certain aspects of the theory of the formation and analysis of the line spectrum of a hot gas. The underlying motivation for most of the studies discussed here lies in a desire to develop a physically sound procedure for interpreting the line spectrum of a stellar atmosphere ; correspondingly, the major emphasis is given to problems encountered in astrophysics.


The Hydrogen Atom

The Hydrogen Atom

Author: G. Franco Bassani

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 360

ISBN-13: 3642884210

DOWNLOAD EBOOK

Atomic hydrogen, the simplest of all stable atoms, has been a challenge to spectroscopists and theoreticians for many years. Here, as in similar systems like positronium, muonium and possibly helium, the accuracy of theoretical predictions is comparable to that of experimental measurements. Hence exciting confrontations are possible. This together with expected large experimental improvements explains the strong interest in the symposium held in Pisa in June-July 1988. The resulting book completely covers the precision spectroscopy of atomic hydrogen and hydrogen-like systems, and also discusses aspects of QED and the influence of strong fields.


Chemistry

Chemistry

Author: Steven S. Zumdahl

Publisher: Cengage Learning

Published: 2012

Total Pages: 1128

ISBN-13: 9780840065865

DOWNLOAD EBOOK

Steve and Susan Zumdahl's texts focus on helping students build critical thinking skills through the process of becoming independent problem-solvers. They help students learn to "think like a chemists" so they can apply the problem solving process to all aspects of their lives. In CHEMISTRY: AN ATOMS FIRST APPROACH, 1e, International Edition the Zumdahls use a meaningful approach that begins with the atom and proceeds through the concept of molecules, structure, and bonding, to more complex materials and their properties. Because this approach differs from what most students have experienced in high school courses, it encourages them to focus on conceptual learning early in the course, rather than relying on memorization and a "plug and chug" method of problem solving that even the best students can fall back on when confronted with familiar material. The atoms first organization provides an opportunity for students to use the tools of critical thinkers: to ask questions, to apply rules and models and to


Astronomical Spectroscopy: An Introduction To The Atomic And Molecular Physics Of Astronomical Spectroscopy (Third Edition)

Astronomical Spectroscopy: An Introduction To The Atomic And Molecular Physics Of Astronomical Spectroscopy (Third Edition)

Author: Jonathan Tennyson

Publisher: World Scientific

Published: 2019-04-17

Total Pages: 283

ISBN-13: 1786346966

DOWNLOAD EBOOK

'The first two editions of this textbook have received well-deserved high acclaims, and this — the third edition — deserves no less. Its explanations of the whole gamut of atomic and molecular spectroscopy provide a solid grasp of the theory as well as how to understand such spectra in practice. It thus makes an ideal companion to books that start from the observational aspect of spectroscopy, whether in the lab or at the telescope … This new edition of Tennyson’s book ought to be in the library of every astronomical department.'The Observatory Magazine'It closely follows the course given to third year UCL undergraduates, and the worked examples have surely been tested on students … The last two chapters serve as an effective appendix on more specialised topics in atomic and molecular theory.'Contemporary PhysicsThe third edition of Astronomical Spectroscopy examines the physics necessary to understand and interpret astronomical spectra. It offers a step-by-step guide to the atomic and molecular physics involved in providing astronomical spectra starting from the relatively simple hydrogen atom and working its way to the spectroscopy of small molecules.Based on UCL course material, this book uses actual astronomical spectra to illustrate the theoretical aspects of the book to give the reader a feel for such spectra as well as an awareness of what information can be retrieved from them. It also provides comprehensive exercises, with answers given, to aid understanding.


Infrared Spectroscopy

Infrared Spectroscopy

Author: James M. Thompson

Publisher: CRC Press

Published: 2018-01-19

Total Pages: 166

ISBN-13: 135120601X

DOWNLOAD EBOOK

It is estimated that there are about 10 million organic chemicals known, and about 100,000 new organic compounds are produced each year. Some of these new chemicals are made in the laboratory and some are isolated from natural products. The structural determination of these compounds is the job of the chemist. There are several instrumental techniques used to determine the structures of organic compounds. These include NMR, UV/visible, infrared spectroscopy, mass spectrometry, and X-ray crystallography. Of all the instrumental techniques listed, infrared spectroscopy and mass spectrometry are the two most popular techniques, mainly because they tend to be less expensive and give us the most structural information. This book is an introductory text designed to acquaint undergraduate and graduate students with the basic theory and interpretative techniques of infrared spectroscopy. Much of the material in this text has been used over a period of several years for teaching courses in materials characterization and chemical analysis. It presents the infrared spectra of the major classes of organic compounds and correlates the infrared bands (bond vibrations) of each spectrum with the structural features of the compound it represents. This has been done for hydrocarbons, organic acids, ketones, aldehydes, esters, anhydrides, phenols, amines, and amides. The text discusses the origin of the fragments, techniques, innovations, and applications in infrared spectroscopy. It is interspersed with many illustrations, examples, an adequate but not overwhelming bibliography, and problems for students. It will serve as a lecture text for a one-semester course in infrared spectroscopy or can be used to teach the infrared spectroscopy portion of a broader course in material characterization and chemical analysis.