The Orbit Method in Representation Theory

The Orbit Method in Representation Theory

Author: Dulfo

Publisher: Springer Science & Business Media

Published: 1990-01-01

Total Pages: 244

ISBN-13: 9780817634742

DOWNLOAD EBOOK

Ever since its introduction around 1960 by Kirillov, the orbit method has played a major role in representation theory of Lie groups and Lie algebras. This book contains the proceedings of a conference held from August 29 to September 2, 1988, at the University of Copenhagen, about "the orbit method in representation theory." It contains ten articles, most of which are original research papers, by well-known mathematicians in the field, and it reflects the fact that the orbit method plays an important role in the representation theory of semisimple Lie groups, solvable Lie groups, and even more general Lie groups, and also in the theory of enveloping algebras.


The Orbit Method in Representation Theory

The Orbit Method in Representation Theory

Author: Dulfo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 234

ISBN-13: 1461244862

DOWNLOAD EBOOK

Ever since its introduction around 1960 by Kirillov, the orbit method has played a major role in representation theory of Lie groups and Lie algebras. This book contains the proceedings of a conference held from August 29 to September 2, 1988, at the University of Copenhagen, about "the orbit method in representation theory." It contains ten articles, most of which are original research papers, by well-known mathematicians in the field, and it reflects the fact that the orbit method plays an important role in the representation theory of semisimple Lie groups, solvable Lie groups, and even more general Lie groups, and also in the theory of enveloping algebras.


Lectures on the Orbit Method

Lectures on the Orbit Method

Author: Aleksandr Aleksandrovich Kirillov

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 434

ISBN-13: 0821835300

DOWNLOAD EBOOK

Describes the essence of the orbit method for non-experts and gives a detailed exposition of the method. This work can be used as a text for a graduate course, as well as a handbook for non-experts and a reference book for research mathematicians and mathematical physicists.


Algebraic and Analytic Methods in Representation Theory

Algebraic and Analytic Methods in Representation Theory

Author:

Publisher: Elsevier

Published: 1996-09-27

Total Pages: 357

ISBN-13: 0080526950

DOWNLOAD EBOOK

This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field


The Orbit Method in Geometry and Physics

The Orbit Method in Geometry and Physics

Author: Christian Duval

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 478

ISBN-13: 1461200296

DOWNLOAD EBOOK

The orbit method influenced the development of several areas of mathematics in the second half of the 20th century and remains a useful and powerful tool in such areas as Lie theory, representation theory, integrable systems, complex geometry, and mathematical physics. Among the distinguished names associated with the orbit method is that of A.A. Kirillov, whose pioneering paper on nilpotent orbits (1962), places him as the founder of orbit theory. The original research papers in this volume are written by prominent mathematicians and reflect recent achievements in orbit theory and other closely related areas such as harmonic analysis, classical representation theory, Lie superalgebras, Poisson geometry, and quantization. Contributors: A. Alekseev, J. Alev, V. Baranovksy, R. Brylinski, J. Dixmier, S. Evens, D.R. Farkas, V. Ginzburg, V. Gorbounov, P. Grozman, E. Gutkin, A. Joseph, D. Kazhdan, A.A. Kirillov, B. Kostant, D. Leites, F. Malikov, A. Melnikov, P.W. Michor, Y.A. Neretin, A. Okounkov, G. Olshanski, F. Petrov, A. Polishchuk, W. Rossmann, A. Sergeev, V. Schechtman, I. Shchepochkina. The work will be an invaluable reference for researchers in the above mentioned fields, as well as a useful text for graduate seminars and courses.


Lie Groups, Geometry, and Representation Theory

Lie Groups, Geometry, and Representation Theory

Author: Victor G. Kac

Publisher: Springer

Published: 2018-12-12

Total Pages: 545

ISBN-13: 3030021912

DOWNLOAD EBOOK

This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)


Introduction to Representation Theory

Introduction to Representation Theory

Author: Pavel I. Etingof

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 240

ISBN-13: 0821853511

DOWNLOAD EBOOK

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.


Representations of the Infinite Symmetric Group

Representations of the Infinite Symmetric Group

Author: Alexei Borodin

Publisher: Cambridge University Press

Published: 2017

Total Pages: 169

ISBN-13: 1107175550

DOWNLOAD EBOOK

An introduction to the modern representation theory of big groups, exploring its connections to probability and algebraic combinatorics.


A Course in Finite Group Representation Theory

A Course in Finite Group Representation Theory

Author: Peter Webb

Publisher: Cambridge University Press

Published: 2016-08-19

Total Pages: 339

ISBN-13: 1107162394

DOWNLOAD EBOOK

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.


Lectures on Representation Theory

Lectures on Representation Theory

Author: Jing-Song Huang

Publisher: World Scientific

Published: 1999

Total Pages: 206

ISBN-13: 9789810237257

DOWNLOAD EBOOK

This book is an expanded version of the lectures given at the Nankai Mathematical Summer School in 1997. It provides an introduction to Lie groups, Lie algebras and their representations as well as introduces some directions of current research for graduate students who have little specialized knowledge in representation theory. It only assumes that the reader has a good knowledge of linear algebra and some basic knowledge of abstract algebra.Parts I-III of the book cover the relatively elementary material of representation theory of finite groups, simple Lie algebras and compact Lie groups. These theories are natural continuation of linear algebra. The last chapter of Part III includes some recent results on extension of Weyl's construction to exceptional groups. Part IV covers some advanced material on infinite-dimensional representations of non-compact groups such as the orbit method, minimal representations and dual pair correspondences, which introduces some directions of the current research in representation theory.