Make the fullest possible recovery after neurological injury with this definitive guide—by a doctor and spinal cord injury survivor who’s been there After an accident that left him permanently paralyzed over ten years ago, Dr. Bradford Berk made it his mission to help others recover from acute neurological injury (ANI). As the founder and director of the University of Rochester Neurorestoration Institute, he brings his abundant experience in working with patients and making his own ongoing recovery to Getting Your Brain and Body Back, the most up-to-date guide for survivors of spinal cord injury (SCI), stroke, and traumatic brain injury (TBI). Each of these acute neurological injuries can result in similar physical and psychological challenges and require similar treatments, medications, and assistive devices. Getting Your Brain and Body Back offers comprehensive, reassuring guidance for your every concern: How to deal with grief and trauma in the aftermath of accident or injury—and build resilience as you find your way forward What adaptive devices—for bathing, dining, mobility, and more—will help you enjoy life to the utmost How to prevent and treat secondary health problems of every kind, such as heart, skin, and bladder troubles—sexual health included! Therapeutic approaches from both Western and Eastern medicine to consider for maximum healing and pain relief Dr. Berk’s candid advice on medical treatment and daily living—plus insights from the brightest minds in the field—will help get you or your loved one back to life.
This book provides a comprehensive overview of the current state of the art of practical applications of neuroprosthesis based on functional electrical stimulation for restoration of motor functions lost by spinal cord injury and discusses the use of brain-computer interfaces for their control. The book covers numerous topics starting with basics about spinal cord injury, electrical stimulation, electrical brain signals and brain-computer interfaces. It continues with an overview of neuroprosthetic solutions for different purposes and non-invasive and invasive brain-computer interface implementations and presents clinical use cases and practical applications of BCIs. Finally, the authors give an outlook on cutting edge research with a high potential for clinical translation in the near future. All authors committed themselves to use easy-to-understand language and to avoid very specific information, focusing instead on the essential aspects. This makes this book an ideal choice not only for researchers and clinicians at all stages of their education interested in the topic of brain-computer interface-controlled neuroprostheses, but also for end users and their caregivers who want to inform themselves about the current technological possibilities to improve paralyzed motor functions.
Following injury or disease, neural circuitry can be altered to varying degrees leading to highly individualized characteristics that may or may not resemble original function. In addition, lost or partially damaged circuits and the effects of biological recovery processes coupled with learned compensatory strategies create a new neuroanatomy with capabilities that are often not functional or may interfere with daily life. To date, the majority of approaches used to treat neurological dysfunction have focused on the replacement of lost or damaged function, usually through the suppression of surviving neural activity and the application of mechanical assistive devices. Restorative Neurology of Spinal Cord Injury offers a different and novel approach. Focusing on the spinal cord and its role in motor control, the book details the clinical and neurophysiological assessment process and methods developed throughout the past half century by basic and clinical scientists. Then, through the use of specialized clinical and neurophysiological testing methods, conduction and processing performed within the surviving neural circuitry is examined and characterized in detail. Based on the results of such assessment, treatment strategies, also described in this book, are applied to augment, rather than replace, the performance of surviving neural circuitry and improve the functional capacity of people who have experienced injury to their spinal cords.
An estimated 11,000 spinal cord injuries occur each year in the United States and more than 200,000 Americans suffer from maladies associated with spinal cord injury. This includes paralysis, bowel and bladder dysfunction, sexual dysfunction, respiratory impairment, temperature regulation problems, and chronic pain. During the last two decades, longstanding beliefs about the inability of the adult central nervous system to heal itself have been eroded by the flood of new information from research in the neurosciences and related fields. However, there are still no cures and the challenge of restoring function in the wake of spinal cord injuries remains extremely complex. Spinal Cord Injury examines the future directions for research with the goal to accelerate the development of cures for spinal cord injuries. While many of the recommendations are framed within the context of the specific needs articulated by the New York Spinal Cord Injury Research Board, the Institute of Medicine's panel of experts looked very broadly at research priorities relating to future directions for the field in general and make recommendations to strengthen and coordinate the existing infrastructure. Funders at federal and state agencies, academic organizations, pharmaceutical and device companies, and non-profit organizations will all find this book to be an essential resource as they examine their opportunities.
Diagnosis and Treatment of Spinal Cord Injury will enhance readers' understanding of the complexities of the diagnosis and management of spinal cord injuries. Featuring chapters on drug delivery, exercise, and rehabilitation, this volume discusses in detail the impact of the clinical features, diagnosis, management, and long-term prognosis of spinal cord injuries on the lives of those affected. The book has applicability for neuroscientists, neurologists, clinicians, and anyone working to better understand spinal cord injuries. - Covers both the diagnosis and treatment of spinal cord injury - Contains chapter abstracts, key facts, dictionary, and summary points to aid in understanding - Features chapters on epidemiology and pain - Includes MRI usage, biomarkers, and stem cell and gene therapy for management of spinal cord injury - Discusses pain reduction, drug delivery, and rehabilitation
Brain Protection Strategies and Nanomedicine, Volume 266 in the Progress in Brain Research serial highlights new advances in the field, with this new volume presenting interesting chapters on a variety of topics, including Histamine H3 and H4 receptors modulate Parkinson’s disease induced brain pathology: Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy, Ultra Early Molecular Biologic Diagnosis Of Malignant And Neurodegenerative Diseases By The Immunospecific Profiles Of The Proteins Markers Of The Surface Of The Mobilized Autologous Hematopoietic Stem Cells, Neuroprotective effects of Insulin like growth factor-1 on Engineered metal Nanoparticles Ag, Cu and Al induced blood-brain barrier breakdown, and more. Other chapters cover how Methamphetamine exacerbates pathophysiology of traumatic brain injury at high altitude: Neuroprotective effects of nanodelivery of a potent antioxidant compound H-290/51, Effectiveness of bortezomib and temozolomide for eradication of recurrent human glioblastoma cells, resistant to radiation, and more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in Progress in Brain Research serials Includes the latest information on brain protection strategies and nanomedicine
Physical rehabilitation for walking recovery after spinal cord injury is undergoing a paradigm shift. Therapy historically has focused on compensation for sensorimotor deficits after SCI using wheelchairs and bracing to achieve mobility. With locomotor training, the aim is to promote recovery via activation of the neuromuscular system below the level of the lesion. What basic scientists have shown us as the potential of the nervous system for plasticity, to learn, even after injury is being translated into a rehabilitation strategy by taking advantage of the intrinsic biology of the central nervous system. While spinal cord injury from basic and clinical perspectives was the gateway for developing locomotor training, its application has been extended to other populations with neurologic dysfunction resulting in loss of walking or walking disability.
Many hundreds of thousands suffer spinal cord injuries leading to loss of sensation and motor function in the body below the point of injury. Spinal cord research has made some significant strides towards new treatment methods, and is a focus of many laboratories worldwide. In addition, research on the involvement of the spinal cord in pain and the abilities of nervous tissue in the spine to regenerate has increasingly been on the forefront of biomedical research in the past years. The Spinal Cord, a collaboration with the Christopher and Dana Reeve Foundation, is the first comprehensive book on the anatomy of the mammalian spinal cord. Tens of thousands of articles and dozens of books are published on this subject each year, and a great deal of experimental work has been carried out on the rat spinal cord. Despite this, there is no comprehensive and authoritative atlas of the mammalian spinal cord. Almost all of the fine details of spinal cord anatomy must be searched for in journal articles on particular subjects. This book addresses this need by providing both a comprehensive reference on the mammalian spinal cord and a comparative atlas of both rat and mouse spinal cords in one convenient source. The book provides a descriptive survey of the details of mammalian spinal cord anatomy, focusing on the rat with many illustrations from the leading experts in the field and atlases of the rat and the mouse spinal cord. The rat and mouse spinal cord atlas chapters include photographs of Nissl stained transverse sections from each of the spinal cord segments (obtained from a single unfixed spinal cord), detailed diagrams of each of the spinal cord segments pictured, delineating the laminae of Rexed and all other significant neuronal groupings at each level and photographs of additional sections displaying markers such as acetylcholinesterase (AChE), calbindin, calretinin, choline acetlytransferase, neurofilament protein (SMI 32), enkephalin, calcitonin gene-related peptide (CGRP), and neuronal nuclear protein (NeuN). - The text provides a detailed account of the anatomy of the mammalian spinal cord and surrounding musculoskeletal elements - The major topics addressed are: development of the spinal cord; the gross anatomy of the spinal cord and its meninges; spinal nerves, nerve roots, and dorsal root ganglia; the vertebral column, vertebral joints, and vertebral muscles; blood supply of the spinal cord; cytoarchitecture and chemoarchitecture of the spinal gray matter; musculotopic anatomy of motoneuron groups; tracts connecting the brain and spinal cord; spinospinal pathways; sympathetic and parasympathetic elements in the spinal cord; neuronal groups and pathways that control micturition; the anatomy of spinal cord injury in experimental animals - The atlas of the rat and mouse spinal cord has the following features: Photographs of Nissl stained transverse sections from each of 34 spinal segments for the rat and mouse; Detailed diagrams of each of the 34 spinal segments for rat and mouse, delineating the laminae of Rexed and all other significant neuronal groupings at each level. ; Alongside each of the 34 Nissl stained segments, there are additional sections displaying markers such as acetylcholinesterase, calbindin, calretinin, choline acetlytransferase, neurofilament protein (SMI 32), and neuronal nuclear protein (NeuN) - All the major motoneuron clusters are identified in relation to the individual muscles or muscle groups they supply