Lectures on Navier-Stokes Equations

Lectures on Navier-Stokes Equations

Author: Tai-Peng Tsai

Publisher: American Mathematical Soc.

Published: 2018-08-09

Total Pages: 239

ISBN-13: 1470430967

DOWNLOAD EBOOK

This book is a graduate text on the incompressible Navier-Stokes system, which is of fundamental importance in mathematical fluid mechanics as well as in engineering applications. The goal is to give a rapid exposition on the existence, uniqueness, and regularity of its solutions, with a focus on the regularity problem. To fit into a one-year course for students who have already mastered the basics of PDE theory, many auxiliary results have been described with references but without proofs, and several topics were omitted. Most chapters end with a selection of problems for the reader. After an introduction and a careful study of weak, strong, and mild solutions, the reader is introduced to partial regularity. The coverage of boundary value problems, self-similar solutions, the uniform L3 class including the celebrated Escauriaza-Seregin-Šverák Theorem, and axisymmetric flows in later chapters are unique features of this book that are less explored in other texts. The book can serve as a textbook for a course, as a self-study source for people who already know some PDE theory and wish to learn more about Navier-Stokes equations, or as a reference for some of the important recent developments in the area.


Initial-boundary Value Problems and the Navier-Stokes Equations

Initial-boundary Value Problems and the Navier-Stokes Equations

Author: Heinz-Otto Kreiss

Publisher: SIAM

Published: 1989-01-01

Total Pages: 408

ISBN-13: 0898719135

DOWNLOAD EBOOK

Annotation This book provides an introduction to the vast subject of initial and initial-boundary value problems for PDEs, with an emphasis on applications to parabolic and hyperbolic systems. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. Researchers and graduate students in applied mathematics and engineering will find Initial-Boundary Value Problems and the Navier-Stokes Equations invaluable. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. There are many new results, in particular on the Navier-Stokes equations. The direct approach to the subject still gives a valuable introduction to an important area of applied analysis.


Navier–Stokes Equations

Navier–Stokes Equations

Author: Grzegorz Łukaszewicz

Publisher: Springer

Published: 2016-04-12

Total Pages: 395

ISBN-13: 331927760X

DOWNLOAD EBOOK

This volume is devoted to the study of the Navier–Stokes equations, providing a comprehensive reference for a range of applications: from advanced undergraduate students to engineers and professional mathematicians involved in research on fluid mechanics, dynamical systems, and mathematical modeling. Equipped with only a basic knowledge of calculus, functional analysis, and partial differential equations, the reader is introduced to the concept and applications of the Navier–Stokes equations through a series of fully self-contained chapters. Including lively illustrations that complement and elucidate the text, and a collection of exercises at the end of each chapter, this book is an indispensable, accessible, classroom-tested tool for teaching and understanding the Navier–Stokes equations. Incompressible Navier–Stokes equations describe the dynamic motion (flow) of incompressible fluid, the unknowns being the velocity and pressure as functions of location (space) and time variables. A solution to these equations predicts the behavior of the fluid, assuming knowledge of its initial and boundary states. These equations are one of the most important models of mathematical physics: although they have been a subject of vivid research for more than 150 years, there are still many open problems due to the nature of nonlinearity present in the equations. The nonlinear convective term present in the equations leads to phenomena such as eddy flows and turbulence. In particular, the question of solution regularity for three-dimensional problem was appointed by Clay Institute as one of the Millennium Problems, the key problems in modern mathematics. The problem remains challenging and fascinating for mathematicians, and the applications of the Navier–Stokes equations range from aerodynamics (drag and lift forces), to the design of watercraft and hydroelectric power plants, to medical applications such as modeling the flow of blood in the circulatory system.


Navier-Stokes Equations

Navier-Stokes Equations

Author: Peter Constantin

Publisher: University of Chicago Press

Published: 1988

Total Pages: 200

ISBN-13: 0226115496

DOWNLOAD EBOOK

Lecture notes of graduate courses given by the authors at Indiana University (1985-86) and the University of Chicago (1986-87). Paper edition, $14.95. Annotation copyright Book News, Inc. Portland, Or.


The Navier-Stokes Problem in the 21st Century

The Navier-Stokes Problem in the 21st Century

Author: Pierre Gilles Lemarie-Rieusset

Publisher: CRC Press

Published: 2016-04-06

Total Pages: 732

ISBN-13: 146656623X

DOWNLOAD EBOOK

Up-to-Date Coverage of the Navier–Stokes Equation from an Expert in Harmonic Analysis The complete resolution of the Navier–Stokes equation—one of the Clay Millennium Prize Problems—remains an important open challenge in partial differential equations (PDEs) research despite substantial studies on turbulence and three-dimensional fluids. The Navier–Stokes Problem in the 21st Century provides a self-contained guide to the role of harmonic analysis in the PDEs of fluid mechanics. The book focuses on incompressible deterministic Navier–Stokes equations in the case of a fluid filling the whole space. It explores the meaning of the equations, open problems, and recent progress. It includes classical results on local existence and studies criterion for regularity or uniqueness of solutions. The book also incorporates historical references to the (pre)history of the equations as well as recent references that highlight active mathematical research in the field.


Applied Analysis of the Navier-Stokes Equations

Applied Analysis of the Navier-Stokes Equations

Author: Charles R. Doering

Publisher: Cambridge University Press

Published: 1995

Total Pages: 236

ISBN-13: 9780521445689

DOWNLOAD EBOOK

This introductory physical and mathematical presentation of the Navier-Stokes equations focuses on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion.


Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations andRelated Models

Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations andRelated Models

Author: Franck Boyer

Publisher: Springer Science & Business Media

Published: 2012-11-06

Total Pages: 538

ISBN-13: 1461459753

DOWNLOAD EBOOK

The objective of this self-contained book is two-fold. First, the reader is introduced to the modelling and mathematical analysis used in fluid mechanics, especially concerning the Navier-Stokes equations which is the basic model for the flow of incompressible viscous fluids. Authors introduce mathematical tools so that the reader is able to use them for studying many other kinds of partial differential equations, in particular nonlinear evolution problems. The background needed are basic results in calculus, integration, and functional analysis. Some sections certainly contain more advanced topics than others. Nevertheless, the authors’ aim is that graduate or PhD students, as well as researchers who are not specialized in nonlinear analysis or in mathematical fluid mechanics, can find a detailed introduction to this subject. .


Compressible Navier-Stokes Equations

Compressible Navier-Stokes Equations

Author: Pavel Plotnikov

Publisher: Springer Science & Business Media

Published: 2012-08-04

Total Pages: 470

ISBN-13: 3034803672

DOWNLOAD EBOOK

The book presents the modern state of the art in the mathematical theory of compressible Navier-Stokes equations, with particular emphasis on the applications to aerodynamics. The topics covered include: modeling of compressible viscous flows; modern mathematical theory of nonhomogeneous boundary value problems for viscous gas dynamics equations; applications to optimal shape design in aerodynamics; kinetic theory for equations with oscillating data; new approach to the boundary value problems for transport equations. The monograph offers a comprehensive and self-contained introduction to recent mathematical tools designed to handle the problems arising in the theory.


Recent developments in the Navier-Stokes problem

Recent developments in the Navier-Stokes problem

Author: Pierre Gilles Lemarie-Rieusset

Publisher: CRC Press

Published: 2002-04-26

Total Pages: 412

ISBN-13: 9781420035674

DOWNLOAD EBOOK

The Navier-Stokes equations: fascinating, fundamentally important, and challenging,. Although many questions remain open, progress has been made in recent years. The regularity criterion of Caffarelli, Kohn, and Nirenberg led to many new results on existence and non-existence of solutions, and the very active search for mild solutions in the 1990's culminated in the theorem of Koch and Tataru that, in some ways, provides a definitive answer. Recent Developments in the Navier-Stokes Problem brings these and other advances together in a self-contained exposition presented from the perspective of real harmonic analysis. The author first builds a careful foundation in real harmonic analysis, introducing all the material needed for his later discussions. He then studies the Navier-Stokes equations on the whole space, exploring previously scattered results such as the decay of solutions in space and in time, uniqueness, self-similar solutions, the decay of Lebesgue or Besov norms of solutions, and the existence of solutions for a uniformly locally square integrable initial value. Many of the proofs and statements are original and, to the extent possible, presented in the context of real harmonic analysis. Although the existence, regularity, and uniqueness of solutions to the Navier-Stokes equations continue to be a challenge, this book is a welcome opportunity for mathematicians and physicists alike to explore the problem's intricacies from a new and enlightening perspective.


The Three-Dimensional Navier–Stokes Equations

The Three-Dimensional Navier–Stokes Equations

Author: James C. Robinson

Publisher: Cambridge University Press

Published: 2016-09-07

Total Pages: 487

ISBN-13: 1316715124

DOWNLOAD EBOOK

A rigorous but accessible introduction to the mathematical theory of the three-dimensional Navier–Stokes equations, this book provides self-contained proofs of some of the most significant results in the area, many of which can only be found in research papers. Highlights include the existence of global-in-time Leray–Hopf weak solutions and the local existence of strong solutions; the conditional local regularity results of Serrin and others; and the partial regularity results of Caffarelli, Kohn, and Nirenberg. Appendices provide background material and proofs of some 'standard results' that are hard to find in the literature. A substantial number of exercises are included, with full solutions given at the end of the book. As the only introductory text on the topic to treat all of the mainstream results in detail, this book is an ideal text for a graduate course of one or two semesters. It is also a useful resource for anyone working in mathematical fluid dynamics.