Switching on Plant Innate Immunity Signaling Systems

Switching on Plant Innate Immunity Signaling Systems

Author: P. Vidhyasekaran

Publisher: Springer

Published: 2016-01-23

Total Pages: 370

ISBN-13: 3319261185

DOWNLOAD EBOOK

This book presents the ways and means to switch on plant immune signaling systems using PAMP-PIMP-PRR signaling complex for crop disease management. It also describes bioengineering approaches to develop transgenic plants expressing enhanced disease resistance using genes encoding PAMPs, PRRs and transcription factors and genes involved in generation of PIMPs/HAMPs. It also discusses recent commercial development of PAMP products to switch on plant innate immunity for crop disease management. These unique approaches have been described with more than 100 figures and illustrations and these would make this book attractive for researchers and students to buy this book.


Plant Innate Immunity Signals and Signaling Systems

Plant Innate Immunity Signals and Signaling Systems

Author: P. Vidhyasekaran

Publisher: Springer Nature

Published: 2020-04-15

Total Pages: 276

ISBN-13: 9402419403

DOWNLOAD EBOOK

The volume III of the book presents the ways and means to manipulate the signals and signaling system to enhance the expression of plant innate immunity for crop disease management. It also describes bioengineering approaches to develop transgenic plants expressing enhanced disease resistance using plant immunity signaling genes. It also discusses recent commercial development of biotechnological products to manipulate plant innate immunity for crop disease management. Engineering durable nonspecific resistance to phytopathogens is one of the ultimate goals of plant breeding. However, most of the attempts to reach this goal fail as a result of rapid changes in pathogen populations and the sheer diversity of pathogen infection mechanisms. Recently several bioengineering and molecular manipulation technologies have been developed to activate the ‘sleeping’ plant innate immune system, which has potential to detect and suppress the development of a wide range of plant pathogens in economically important crop plants. Enhancing disease resistance through altered regulation of plant immunity signaling systems would be durable and publicly acceptable. Strategies for activation and improvement of plant immunity aim at enhancing host’s capability of recognizing invading pathogens, boosting the executive arsenal of plant immunity, and interfering with virulence strategies employed by microbial pathogens. Major advances in our understanding of the molecular basis of plant immunity and of microbial infection strategies have opened new ways for engineering durable resistance in crop plants.


Immunity in Insects

Immunity in Insects

Author: Federica Sandrelli

Publisher:

Published: 2020

Total Pages: 246

ISBN-13: 9781071602591

DOWNLOAD EBOOK

This volume details methods and protocols necessary to further the study of insect immunity. Chapters guide readers through up-to-date genomic and transcriptomic approaches, insect samples for proteomic analysis, hemocytes in Drosophila, cellular response in Lepidoptera, insect AMPs, manipulate the composition of mosquito microbiota, viral infections in insects, infections by entomopathogenic nematodes, immune response following oral infections, and protocols to to monitor the effect of septic infections with human pathogens using B. mori as a model. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Immunity in Insects aims to ensure successful results in the further study of this vital field.Incl .


Janeway's Immunobiology

Janeway's Immunobiology

Author: Kenneth Murphy

Publisher: Garland Science

Published: 2010-06-22

Total Pages:

ISBN-13: 9780815344575

DOWNLOAD EBOOK

The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.


Mucosal Vaccines

Mucosal Vaccines

Author: Hiroshi Kiyono

Publisher: Elsevier

Published: 1996-10-23

Total Pages: 501

ISBN-13: 0080537057

DOWNLOAD EBOOK

This comprehensive, authoritative treatise covers all aspects of mucosal vaccines including their development, mechanisms of action, molecular/cellular aspects, and practical applications. The contributing authors and editors of this one-of-a-kind book are very well known in their respective fields. Mucosal Vaccines is organized in a unique format in which basic, clinical, and practical aspects of the mucosal immune system for vaccine development are described and discussed. This project is endorsed by the Society for Mucosal Immunology. - Provides the latest views on mucosal vaccines - Applies basic principles to the development of new vaccines - Links basic, clinical, and practical aspects of mucosal vaccines to different infectious diseases - Unique and user-friendly organization


Plant Pattern Recognition Receptors

Plant Pattern Recognition Receptors

Author: Libo Shan

Publisher:

Published: 2017

Total Pages: 358

ISBN-13: 9781493968596

DOWNLOAD EBOOK

"This volume covers protocols on techniques ranging from MAMP isolations from diverse microorganisms, PRR identifications from different plant species, MAMP-PRR binding, and a series of signaling responses and events revealed by various biochemical, cellular, genetic and bioinformatic tools. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Pattern Recognition Receptors: Methods and Protocolsaims to ensure successful results in the further study of this vital field." -- OCLC.


Molecular Aspects of Plant-Pathogen Interaction

Molecular Aspects of Plant-Pathogen Interaction

Author: Archana Singh

Publisher: Springer

Published: 2018-02-15

Total Pages: 367

ISBN-13: 9811073716

DOWNLOAD EBOOK

The book offers an integrated overview of plant–pathogen interactions. It discusses all the steps in the pathway, from the microbe–host-cell interface and the plant’s recognition of the microbe to the plant’s defense response and biochemical alterations to achieve tolerance / resistance. It also sheds light on the classes of pathogens (bacteria, fungus and viruses); effector molecules, such as PAMPs; receptor molecules like PRRs and NBS-LRR proteins; signaling components like MAPKs; regulatory molecules, such as phytohormones and miRNA; transcription factors, such as WRKY; defense-related proteins such as PR-proteins; and defensive metabolites like secondary metabolites. In addition, it examines the role of post-genomics, high-throughput technology (transcriptomics and proteomics) in studying pathogen outbreaks causing crop losses in a number of plants. Providing a comprehensive picture of plant-pathogen interaction, the updated information included in this book is valuable for all those involved in crop improvement.


Principles of Plant Infection

Principles of Plant Infection

Author: J Van Der Plank

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 231

ISBN-13: 0323159672

DOWNLOAD EBOOK

Principles of Plant Infection investigates interactions among pathogens, host plants, the environment, time and space, and their role in plant infection. It describes the principles of infection, particularly of the root, stem, or leaf, as they apply to fungi, bacteria, or viruses. It also highlights the dual nature of resistance and suggests theories of host resistance. Organized into seven chapters, this volume begins with an overview of the relation between the amount of inoculum and the amount of disease it causes. It then turns to a discussion of the disease/inoculum relations of tobacco mosaic virus; how obligate synergism restricts the transmission of pathogens; disease/inoculum relations in root disease; the independent action of spores as inoculum; variable factors other than the amount of inoculum that affect plant disease; and time as a determining factor of the degree of plant infection. The reader is also introduced to endemic disease of plants, the implications of endemicity for plant resistance to disease, the spread of disease via migration of pathogens, and the genetics of host-pathogen interactions. Plant pathologists and plant breeders will gain valuable information from this book.


Plant Hormone Signaling Systems in Plant Innate Immunity

Plant Hormone Signaling Systems in Plant Innate Immunity

Author: P. Vidhyasekaran

Publisher: Springer

Published: 2014-10-09

Total Pages: 458

ISBN-13: 9789401792868

DOWNLOAD EBOOK

Plants are endowed with innate immune system, which acts as a surveillance system against possible attack by pathogens. Plant innate immune systems have high potential to fight against viral, bacterial, oomycete and fungal pathogens and protect the crop plants against wide range of diseases. However, the innate immune system is a sleeping system in unstressed healthy plants. Fast and strong activation of the plant immune responses aids the host plants to win the war against the pathogens. Plant hormone signaling systems including salicylate (SA), jasmonate (JA), ethylene (ET), abscisic acid (ABA), auxins, cytokinins, gibberellins and brassinosteroids signaling systems play a key role in activation of the sleeping immune systems. Suppression or induction of specific hormone signaling systems may result in disease development or disease resistance. Specific signaling pathway has to be activated to confer resistance against specific pathogen in a particular host. Two forms of induced resistance, systemic acquired resistance (SAR) and induced systemic resistance (ISR), have been recognized based on the induction of specific hormone signaling systems. Specific hormone signaling system determines the outcome of plant-pathogen interactions, culminating in disease development or disease resistance. Susceptibility or resistance against a particular pathogen is determined by the action of the signaling network. The disease outcome is often determined by complex network of interactions among multiple hormone signaling pathways. Manipulation of the complex hormone signaling systems and fine tuning the hormone signaling events would help in management of various crop diseases. The purpose of the book is to critically examine the potential methods to manipulate the multiple plant hormone signaling systems to aid the host plants to win the battle against pathogens.