Particles in Turbulent Flows

Particles in Turbulent Flows

Author: Leonid I. Zaichik

Publisher: John Wiley & Sons

Published: 2008-12-04

Total Pages: 318

ISBN-13: 3527626263

DOWNLOAD EBOOK

The only work available to treat the theory of turbulent flow with suspended particles, this book also includes a section on simulation methods, comparing the model results obtained with the PDF method to those obtained with other techniques, such as DNS, LES and RANS. Written by experienced scientists with background in oil and gas processing, this book is applicable to a wide range of industries -- from the petrol industry and industrial chemistry to food and water processing.


Snapshots of Hemodynamics

Snapshots of Hemodynamics

Author: Nico Westerhof

Publisher: Springer Science & Business Media

Published: 2006-01-12

Total Pages: 182

ISBN-13: 0387233466

DOWNLOAD EBOOK

Hemodynamics makes it possible to characterize in a quantitative way, the function of the heart and arterial system, thereby producing information about what genetic and molecular processes are of importance for cardiovascular function. Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education by Nico Westerhof, Nikos Stergiopulos and Mark I. M. Noble is a quick reference guide designed to help basic and clinical researchers as well as graduate students to understand hemodynamics. The layout of the book provides short and independent chapters that provide teaching diagrams as well as clear descriptions of the essentials of basic and applied principles of hemodynamics. References are provided at the end of each chapter for further reading and reference.


Particle-Laden Flow

Particle-Laden Flow

Author: Bernard Geurts

Publisher: Springer Science & Business Media

Published: 2007-08-27

Total Pages: 409

ISBN-13: 1402062176

DOWNLOAD EBOOK

This book contains a selection of the papers that were presented at the EUROMECH colloquium on particle-laden flow held at the University of Twente in 2006. The multiscale nature of this challenging field motivated the calling of the colloquium and reflects the central importance that the dispersion of particles in a flow has in various geophysical and environmental problems. The spreading of aerosols and soot in the air, the growth and dispersion of plankton blooms in seas and oceans, or the transport of sediment in rivers, estuaries and coastal regions are striking examples.


Advances in Turbulence 2

Advances in Turbulence 2

Author: Hans-Hermann Fernholz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 528

ISBN-13: 3642838227

DOWNLOAD EBOOK

The Second European Turbulence Conference was held at the Technische Univer sitat Berlin, Federal Republic of Germany, from August 30th to September 2nd 1988 under the auspices of the European Mechanics Committee. It was primar ily devoted to fundamental aspects of turbulence, and aimed at bringing together engineers, physicists, and mathematicians. The scientific committee - serving also as Sub-committee of the European Turbulence Conference - consisted of the following members: G. Comte-Bellot (Lyon), H.-H. Fernholz and H.E. Fiedler (both from Berlin) as co-chairmen of the conference, U. Frisch (Nice), J.C.R. Hunt (Cambridge), E. Krause (Aachen), M. Landahl (Stockholm), A.M. Obukhov (Moscow), and G. Ooms (Amsterdam). The conference programme comprised 6 invited lectures and 94 contributions, presented either orally or at poster sessions. There were 165 participants from 18 countries. All papers published in these conference proceedings were, with the exception of the invited ones, again refereed by the members of the scientific committee. The main research topics discussed at this meeting were stability and gener ation of turbulence, effects of rotation, stratification and buoyancy forces, novel instrumentation, manipulation and control, boundary layers with separation and reattachment, computer simulation, turbulent diffusion, image analysis and flow visualization, vorticity dynamics and turbulence, and large-scale structures. We have taken the liberty of regrouping some papers following the submitted final versions for this volume. Authors may therefore find their paper under a different heading from that in the conference programme.


Theories of Turbulence

Theories of Turbulence

Author: Martin Oberlack

Publisher: Springer

Published: 2014-05-04

Total Pages: 377

ISBN-13: 3709125642

DOWNLOAD EBOOK

The term "turbulence” is used for a large variety of dynamical phenomena of fluids in motion whenever the details of the flow appear to be random and average properties are of primary interest. Just as wide ranging are the theoretical methods that have been applied towards a better understanding of fluid turbulence. In this book a number of these methods are described and applied to a broad range of problems from the transition to turbulence to asymptotic turbulence when the inertial part of the spectrum is fully developed. Statistical as well as nonstatistical treatments are presented, but a complete coverage of the subject is not attempted. The book will be of interest to scientists and engineers who wish to familiarize themselves with modern developments in theories of turbulence. The fact that the properties of turbulent fluid flow are addressed from very different points of view makes this volume rather unique among presently available books on turbulence.


Particle Image Velocimetry

Particle Image Velocimetry

Author: Ronald J. Adrian

Publisher: Cambridge University Press

Published: 2011

Total Pages: 585

ISBN-13: 0521440084

DOWNLOAD EBOOK

Particle image velocimetry, or PIV, refers to a class of methods used in experimental fluid mechanics to determine instantaneous fields of the vector velocity by measuring the displacements of numerous fine particles that accurately follow the motion of the fluid. Although the concept of measuring particle displacements is simple in essence, the factors that need to be addressed to design and implement PIV systems that achieve reliable, accurate, and fast measurements and to interpret the results are surprisingly numerous. The aim of this book is to analyze and explain them comprehensively.


Computational Fluid Dynamics for the Petrochemical Process Industry

Computational Fluid Dynamics for the Petrochemical Process Industry

Author: R.V.A. Oliemans

Publisher: Springer

Published: 2012-11-05

Total Pages: 0

ISBN-13: 9789401056120

DOWNLOAD EBOOK

The second of the 1989 conferences in the Shell Conference Series, held from 10 to 12 December in the Netherlands and organized by Koninklijke/Shell-Laboratorium, Amsterdam, was on "Computational Fluid Dynamics for Petrochemical Process Equip ment". The objective was to generate a shared perspective on the subject with respect to its role in the design of equipment involving complex flows. The conference was attended by scientists from four Shell laboratories and experts from universities in the USA, France, Great Britain, Germany and The Netherlands. R. V. A. Oliemans, G. Ooms and T. M. M. Verheggen formed the organizing committee. Complexities in fluid flow may arise from equipment geometry and/or the fluids themselves, which can be mUlti-component, single-phase or multiphase. Pressure and temperature gradients and any reactivity of components in the flow stream can be additional factors. Four themes were addressed: turbulent reacting and non-reacting flow, dispersed multiphase flow, separated two-phase flow and fluid flow simulation tools. The capabilities and limitations of a sequence of turbulence flow models, from the relatively simple k-£ model to direct numerical simulation and large eddy turbulence flow models, were considered for a range of petrochemical process equipment. Flow stability aspects and the potential of cellular automata for the simulation of industrial flows also received attention. The papers published in this special issue of Applied Scientific Research provide a fair representation of the Computational Fluid Dynamics topics discussed in the context of their application to petrochemical process equipment.


IUTAM Symposium on Computational Approaches to Multiphase Flow

IUTAM Symposium on Computational Approaches to Multiphase Flow

Author: S. Balachandar

Publisher: Springer Science & Business Media

Published: 2007-01-28

Total Pages: 443

ISBN-13: 1402049773

DOWNLOAD EBOOK

The book provides a broad overview of the full spectrum of state-of-the-art computational activities in multiphase flow as presented by top practitioners in the field. It starts with well-established approaches and builds up to newer methods. These methods are illustrated with applications to a broad spectrum of problems involving particle dispersion and deposition, turbulence modulation, environmental flows, fluidized beds, bubbly flows, and many others.


Gravel-Bed Rivers

Gravel-Bed Rivers

Author: Daizo Tsutsumi

Publisher: John Wiley & Sons

Published: 2017-07-05

Total Pages: 850

ISBN-13: 111897140X

DOWNLOAD EBOOK

With contributions from key researchers across the globe, and edited by internationally recognized leading academics, Gravel-bed Rivers: Processes and Disasters presents the definitive review of current knowledge of gravel-bed rivers. Continuing an established and successful series of scholarly reports, this book consists of the papers presented at the 8th International Gravel-bed Rivers Workshop. Focusing on all the recent progress that has been made in the field, subjects covered include flow, physical modeling, sediment transport theory, techniques and instrumentation, morphodynamics and ecological topics, with special attention given to aspects of disasters relevant to sediment supply and integrated river management. This up-to-date compendium is essential reading for geomorphologists, river engineers and ecologists, river managers, fluvial sedimentologists and advanced students in these fields.


Fundamentals of Dispersed Multiphase Flows

Fundamentals of Dispersed Multiphase Flows

Author: S. Balachandar

Publisher: Cambridge University Press

Published: 2024-03-31

Total Pages: 675

ISBN-13: 100916046X

DOWNLOAD EBOOK

Dispersed multiphase flows are everywhere, from a sneeze to a volcanic eruption. Discover the fundamental physics that connects them all.