A comprehensive, A-to-Z set of task planners for more than one hundred psychosocial problems from alcoholism and anxiety to domestic violence and sexual abuse. Each entry includes a menu of actions the client can undertake to affect resolution, a guide to the practitioner's role in facilitating these actions, and a reference list. An accompanying disk allows social workers to update the task planners they are working with and enables keyword searches for specific topics.
Specifying and implementing dynamical systems with the situation calculus. Modeling and implementing dynamical systems is a central problem in artificial intelligence, robotics, software agents, simulation, decision and control theory, and many other disciplines. In recent years, a new approach to representing such systems, grounded in mathematical logic, has been developed within the AI knowledge-representation community. This book presents a comprehensive treatment of these ideas, basing its theoretical and implementation foundations on the situation calculus, a dialect of first-order logic. Within this framework, it develops many features of dynamical systems modeling, including time, processes, concurrency, exogenous events, reactivity, sensing and knowledge, probabilistic uncertainty, and decision theory. It also describes and implements a new family of high-level programming languages suitable for writing control programs for dynamical systems. Finally, it includes situation calculus specifications for a wide range of examples drawn from cognitive robotics, planning, simulation, databases, and decision theory, together with all the implementation code for these examples. This code is available on the book's Web site.
This research book contains a sample of most recent research in the area of intelligent autonomous systems. The contributions include: General aspects of intelligent autonomous systems Design of intelligent autonomous robots Biped robots Robot for stair-case navigation Ensemble learning for multi-source information fusion Intelligent autonomous systems in psychiatry Condition monitoring of internal combustion engine Security management of an enterprise network High dimensional neural nets and applications This book is directed to engineers, scientists, professor and the undergraduate/postgraduate students who wish to explore this field further.
Classical planning is the problem of finding a sequence of actions for achieving a goal from an initial state assuming that actions have deterministic effects. The most effective approach for finding such plans is based on heuristic search guided by heuristics extracted automatically from the problem representation. In this thesis, we introduce alternative approaches for performing inference over the structure of planning problems that do not appeal to heuristic functions, nor to reductions to other formalisms such as SAT or CSP. We show that many of the standard benchmark domains can be solved with almost no search or a polynomially bounded amount of search, once the structure of planning problems is taken into account. In certain cases we can characterize this structure in terms of a novel width parameter for classical planning.
InfoWorld is targeted to Senior IT professionals. Content is segmented into Channels and Topic Centers. InfoWorld also celebrates people, companies, and projects.
This volume presents novel computational models for representing digital humans and their interactions with other virtual characters and meaningful environments. In this context, we describe efficient algorithms to animate, control, and author human-like agents having their own set of unique capabilities, personalities, and desires. We begin with the lowest level of footstep determination to steer agents in collision-free paths. Steering choices are controlled by navigation in complex environments, including multi-domain planning with dynamically changing situations. Virtual agents are given perceptual capabilities analogous to those of real people, including sound perception, multi-sense attention, and understanding of environment semantics which affect their behavior choices. The roles and impacts of individual attributes, such as memory and personality are explored. The animation challenges of integrating a number of simultaneous behavior and movement demands on an agent are addressed through an open source software system. Finally, the creation of stories and narratives with groups of agents subject to planning and environmental constraints culminates the presentation.
Selected contributions to the Workshop WAFR 2002, held December 15-17, 2002, Nice, France. This fifth biannual Workshop on Algorithmic Foundations of Robotics focuses on algorithmic issues related to robotics and automation. The design and analysis of robot algorithms raises fundamental questions in computer science, computational geometry, mechanical modeling, operations research, control theory, and associated fields. The highly selective program highlights significant new results such as algorithmic models and complexity bounds. The validation of algorithms, design concepts, or techniques is the common thread running through this focused collection.