The Method of Fractional Steps

The Method of Fractional Steps

Author: Nikolaj N. Yanenko

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 169

ISBN-13: 3642651089

DOWNLOAD EBOOK

The method of. fractional steps, known familiarly as the method oi splitting, is a remarkable technique, developed by N. N. Yanenko and his collaborators, for solving problems in theoretical mechanics numerically. It is applicable especially to potential problems, problems of elasticity and problems of fluid dynamics. Most of the applications at the present time have been to incompressible flow with free bound aries and to viscous flow at low speeds. The method offers a powerful means of solving the Navier-Stokes equations and the results produced so far cover a range of Reynolds numbers far greater than that attained in earlier methods. Further development of the method should lead to complete numerical solutions of many of the boundary layer and wake problems which at present defy satisfactory treatment. As noted by the author very few applications of the method have yet been made to problems in solid mechanics and prospects for answers both in this field and other areas such as heat transfer are encouraging. As the method is perfected it is likely to supplant traditional relaxation methods and finite element methods, especially with the increase in capability of large scale computers. The literal translation was carried out by T. Cheron with financial support of the Northrop Corporation. The editing of the translation was undertaken in collaboration with N. N. Yanenko and it is a plea sure to acknowledge his patient help and advice in this project. The edited manuscript was typed, for the most part, by Mrs.


Navier-Stokes Equations

Navier-Stokes Equations

Author: Roger Temam

Publisher: American Mathematical Soc.

Published: 2001-04-10

Total Pages: 426

ISBN-13: 0821827375

DOWNLOAD EBOOK

Originally published in 1977, the book is devoted to the theory and numerical analysis of the Navier-Stokes equations for viscous incompressible fluid. On the theoretical side, results related to the existence, the uniqueness, and, in some cases, the regularity of solutions are presented. On the numerical side, various approaches to the approximation of Navier-Stokes problems by discretization are considered, such as the finite dereference method, the finite element method, and the fractional steps method. The problems of stability and convergence for numerical methods are treated as completely as possible. The new material in the present book (as compared to the preceding 1984 edition) is an appendix reproducing a survey article written in 1998. This appendix touches upon a few aspects not addressed in the earlier editions, in particular a short derivation of the Navier-Stokes equations from the basic conservation principles in continuum mechanics, further historical perspectives, and indications on new developments in the area. The appendix also surveys some aspects of the related Euler equations and the compressible Navier-Stokes equations. The book is written in the style of a textbook and the author has attempted to make the treatment self-contained. It can be used as a textbook or a reference book for researchers. Prerequisites for reading the book include some familiarity with the Navier-Stokes equations and some knowledge of functional analysis and Sololev spaces.


Fractional Partial Differential Equations And Their Numerical Solutions

Fractional Partial Differential Equations And Their Numerical Solutions

Author: Boling Guo

Publisher: World Scientific

Published: 2015-03-09

Total Pages: 347

ISBN-13: 9814667064

DOWNLOAD EBOOK

This book aims to introduce some new trends and results on the study of the fractional differential equations, and to provide a good understanding of this field to beginners who are interested in this field, which is the authors' beautiful hope.This book describes theoretical and numerical aspects of the fractional partial differential equations, including the authors' researches in this field, such as the fractional Nonlinear Schrödinger equations, fractional Landau-Lifshitz equations and fractional Ginzburg-Landau equations. It also covers enough fundamental knowledge on the fractional derivatives and fractional integrals, and enough background of the fractional PDEs.


Chebyshev and Fourier Spectral Methods

Chebyshev and Fourier Spectral Methods

Author: John P. Boyd

Publisher: Courier Corporation

Published: 2013-06-05

Total Pages: 690

ISBN-13: 0486141926

DOWNLOAD EBOOK

Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.


Splitting Methods for Partial Differential Equations with Rough Solutions

Splitting Methods for Partial Differential Equations with Rough Solutions

Author: Helge Holden

Publisher: European Mathematical Society

Published: 2010

Total Pages: 238

ISBN-13: 9783037190784

DOWNLOAD EBOOK

Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tracking. The theory is illustrated by numerous examples. There is a dedicated Web page that provides MATLABR codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.


Fractional Differential Equations

Fractional Differential Equations

Author: Igor Podlubny

Publisher: Elsevier

Published: 1998-10-27

Total Pages: 366

ISBN-13: 0080531989

DOWNLOAD EBOOK

This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives


Computational Methods for Fluid Dynamics

Computational Methods for Fluid Dynamics

Author: Joel H. Ferziger

Publisher: Springer

Published: 2019-08-16

Total Pages: 606

ISBN-13: 3319996932

DOWNLOAD EBOOK

This book is a guide to numerical methods for solving fluid dynamics problems. The most widely used discretization and solution methods, which are also found in most commercial CFD-programs, are described in detail. Some advanced topics, like moving grids, simulation of turbulence, computation of free-surface flows, multigrid methods and parallel computing, are also covered. Since CFD is a very broad field, we provide fundamental methods and ideas, with some illustrative examples, upon which more advanced techniques are built. Numerical accuracy and estimation of errors are important aspects and are discussed in many examples. Computer codes that include many of the methods described in the book can be obtained online. This 4th edition includes major revision of all chapters; some new methods are described and references to more recent publications with new approaches are included. Former Chapter 7 on solution of the Navier-Stokes equations has been split into two Chapters to allow for a more detailed description of several variants of the Fractional Step Method and a comparison with SIMPLE-like approaches. In Chapters 7 to 13, most examples have been replaced or recomputed, and hints regarding practical applications are made. Several new sections have been added, to cover, e.g., immersed-boundary methods, overset grids methods, fluid-structure interaction and conjugate heat transfer.