Electrochemistry at Metal and Semiconductor Electrodes

Electrochemistry at Metal and Semiconductor Electrodes

Author: Norio Sato

Publisher: Elsevier

Published: 1998-10-09

Total Pages: 413

ISBN-13: 0080530737

DOWNLOAD EBOOK

Electrochemisty at Metal and Semiconductor Electrodes covers the structure of the electrical double layer and charge transfer reactions across the electrode/electrolyte interface. The purpose of the book is to integrate modern electrochemistry and semiconductor physics, thereby, providing a quantitative basis for understanding electrochemistry at metal and semiconductor electrodes. Electrons and ions are the principal particles which play the main role in electrochemistry. This text, therefore, emphasizes the energy level concepts of electrons and ions rather than the phenomenological thermodynamic and kinetic concepts on which most of the classical electrochemistry texts are based. This rationalization of the phenomenological concepts in terms of the physics of semiconductors should enable readers to develop more atomistic and quantitative insights into processes that occur at electrodes. The book incorporates many traditional disciplines of science and engineering such as interfacial chemistry, biochemistry, enzyme chemistry, membrane chemistry, metallurgy, modification of solid interfaces, and materials' corrosion. The text is intended to serve as an introduction for the study of advanced electrochemistry at electrodes and is aimed towards graduates and senior undergraduates studying materials and interfacial chemistry or those beginning research work in the field of electrochemistry.


Electrified Interfaces in Physics, Chemistry and Biology

Electrified Interfaces in Physics, Chemistry and Biology

Author: R Guidelli

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 604

ISBN-13: 940112566X

DOWNLOAD EBOOK

Electrified interfaces span from metaVsemiconductor and metaVelectrolyte interfaces to disperse systems and biological membranes, and are notably important in so many physical, chemical and biological systems that their study has been tackled by researchers with different scientific backgrounds using different methodological approaches. The various electrified interfaces have several common features. The equilibrium distribution of positive and negative ions in an electrolytic solution is governed by the same Poisson-Boltzmann equation independent of whether the solution comes into contact with a metal, a colloidal particle or a biomembrane, and the same is true for the equilibrium distribution of free electrons and holes of a semiconductor in contact with a different conducting phase. Evaluation of electric potential differences across biomembranes is based on the same identity of electrochemical potentials which holds for a glass electrode and which yields the Nernst equation when applied to a metal/solution interface. The theory of thermally activated electron tunneling, which was developed by Marcus, Levich, Dogonadze and others to account for electron transfer across metaVelectrolyte interfaces, is also applied to light induced charge separation and proton translocation reactions across intercellular membranes. From an experimental viewpoint, the same electrochemical and in situ spectroscopic techniques can equally well be employed for the study of apparently quite different electrified interfaces.


Heterogeneous Catalysts

Heterogeneous Catalysts

Author: Wey Yang Teoh

Publisher: John Wiley & Sons

Published: 2021-02-23

Total Pages: 768

ISBN-13: 352781356X

DOWNLOAD EBOOK

Presents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.


Lithium-ion Batteries

Lithium-ion Batteries

Author: Perla B. Balbuena

Publisher: World Scientific

Published: 2004

Total Pages: 424

ISBN-13: 1860943624

DOWNLOAD EBOOK

This invaluable book focuses on the mechanisms of formation of a solid-electrolyte interphase (SEI) on the electrode surfaces of lithium-ion batteries. The SEI film is due to electromechanical reduction of species present in the electrolyte. It is widely recognized that the presence of the film plays an essential role in the battery performance, and its very nature can determine an extended (or shorter) life for the battery. In spite of the numerous related research efforts, details on the stability of the SEI composition and its influence on the battery capacity are still controversial. This book carefully analyzes and discusses the most recent findings and advances on this topic.


Structure of Electrified Interfaces

Structure of Electrified Interfaces

Author: Jacek Lipkowski

Publisher: Wiley-VCH

Published: 1993

Total Pages: 424

ISBN-13:

DOWNLOAD EBOOK

This second volume in the Frontiers of Electrochemistry series provides a modern description of the metal-solution interface and describes the advances made in interfacial electrochemistry during the past decade. Contributing authors summarize the impact of new ex situ and in situ techniques in studying electrode surfaces, and illustrate the significance of the development of new experimental techniques and the availability of reliable data in the theory of electrified interfaces. The review articles demonstrate how a molecular picture of the interface has emerged from traditional models that treated the solution as a dielectric and metal as an electronic continuum. Annotation copyright by Book News, Inc., Portland, OR


Electrolytes at Interfaces

Electrolytes at Interfaces

Author: S. Durand-Vidal

Publisher: Springer Science & Business Media

Published: 2001-11-30

Total Pages: 364

ISBN-13: 9781402004063

DOWNLOAD EBOOK

The aim of this book is to provide the reader with a modern presentation of ionic solutions at interfaces, for physical chemists, chemists and theoretically oriented experimentalists in this field. The discussion is mainly on the structural and thermodynamic properties, in relation to presently available statistical mechanical models. Some dynamic properties are also presented, at a more phenomenological level. The initial chapters are devoted to the presentation of some basic concepts for bulk properties: hydrodynamic interactions, electrostatics, van der Waals forces and thermodynamics of ionic solutions in the framework of a particular model: the mean spherical approximation (MSA). Specific features of interfaces are then discussed: experimental techniques such as in-situ X-ray diffraction, STM and AFM microscopy are described. Ions at liquid/air, liquid/metal and liquid/liquid interfaces are considered from the experimental and theoretical viewpoint. Lastly some dynamic (transport) properties are included, namely the self-diffusion and conductance of small colloids (polyelectrolytes and micelles) and the kinetics of solute transfer at free liquid/liquid interfaces.


Materials for Lithium-Ion Batteries

Materials for Lithium-Ion Batteries

Author: Christian Julien

Publisher: Springer Science & Business Media

Published: 2000-10-31

Total Pages: 658

ISBN-13: 9780792366508

DOWNLOAD EBOOK

A lithium-ion battery comprises essentially three components: two intercalation compounds as positive and negative electrodes, separated by an ionic-electronic electrolyte. Each component is discussed in sufficient detail to give the practising engineer an understanding of the subject, providing guidance on the selection of suitable materials in actual applications. Each topic covered is written by an expert, reflecting many years of experience in research and applications. Each topic is provided with an extensive list of references, allowing easy access to further information. Readership: Research students and engineers seeking an expert review. Graduate courses in electrical drives can also be designed around the book by selecting sections for discussion. The coverage and treatment make the book indispensable for the lithium battery community.


The Interface Structure and Electrochemical Processes at the Boundary Between Two Immiscible Liquids

The Interface Structure and Electrochemical Processes at the Boundary Between Two Immiscible Liquids

Author: Vladimir E. Kazarinov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 254

ISBN-13: 3642718817

DOWNLOAD EBOOK

Studies on the electrochemical processes at the interface between two immiscible liquids began a long time ago: they date back to the end of the last century. Such celebrated scientists as Nemst and Haber, and also young A. N. Frumkin were among those who originated this science. Later A. N. Frumkin went a long way in furthering the studies at the Institute of Electrochemistry. The theory of the appearance of potential in a system of two immiscible electrolytes was developed and experimentally verified before the beginning of the thirties. In later years the studies in this area considerably lagged behind those conducted at metal electrodes which were widely used in different industries. In the past 15 years, however, the situation has radically changed and we have witnessed a drastic increase in the number of publications on the electrochemistry of immiscible electrolytes. We are glad to note that the investiga tions show not only a quantitative but also a qualitative change. The theoretical works on the oil/water interface test not only the thermodynamic aspects of the inter face but also recreate the molecular picture of the process. Along with the now con ventional oilfwater system, electrochemical studies are made on various membranes, including the frnest bilayer lipid membranes, and also on microemulsion systems. A prominent place in the investigation of the oil/water interface is occupied by photoprocesses that come into play at the interface between two ionic conductors.


Atomic-Scale Modelling of Electrochemical Systems

Atomic-Scale Modelling of Electrochemical Systems

Author: Marko M. Melander

Publisher: John Wiley & Sons

Published: 2021-09-09

Total Pages: 372

ISBN-13: 1119605636

DOWNLOAD EBOOK

Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.