This book provides a state-of-the-art update, as well as perspectives on future directions of research and clinical applications in the implementation of biomechanical and biophysical experimental, theoretical and computational models which are relevant to military medicine. Such experimental and modeling efforts are helpful, on the one hand, in understanding the aetiology, pathophysiology and dynamics of injury development and on the other hand in guiding the development of better equipment and protective gear or devices that should ultimately reduce the prevalence and incidence of injuries or lessen their hazardous effects. The book is useful for military-oriented biomedical engineers and medical physicists, as well as for military physiologists and other medical specialists who are interested in the science and technology implemented in modern investigations of military related injuries.
The book provides a comprehensive insight into various corneal emergencies along with their risk factors, causative agents, diagnostic pearls, treatment challenges and management options. It provides essential information on relevant anatomical and physiological aspects in addition to epidemiology and risk factors. Comprising of explanatory flow diagrams, diagnostic and treatment algorithms and high-quality illustrations, this book is written and edited by renowned corneal specialists who have come together to address this complex topic in a simple and effective manner. The book highlights an important aspect of cornea which is relevant for specialists and general ophthalmologists alike and also serves as an important resource for postgraduate students and trainees. It emphasizes on the practical management of corneal emergencies, supplemented with preferred practice patterns and guidelines. Additionally, the book serves as a quick reference for ophthalmic practitioners to adequately manage such cases at the point of first contact.
This book gathers 30 papers presented at the 21st PCBBE, which was hosted by the University of Zielona Góra, Poland, and offered a valuable forum for exchanging ideas and presenting the latest developments in all areas of biomedical engineering. Biocybernetics and biomedical engineering are currently considered one of the most promising ways to improve health care and, consequently, the quality of life. Innovative technical solutions can better meet physicians’ needs and stimulate the development of medical diagnostics and therapy. We are currently witnessing a profound change in the role of medicine, which is becoming ubiquitous in everyday life thanks to technological advances. Further, the development of civilization manifests itself in efforts to unlock the secrets of the human body, and to mimic biological systems in engineering. The biannual Polish Conference on Biocybernetics and Biomedical Engineering (PCBBE) has been held for nearly four decades and has attracted scientists and professionals in the fields of engineering, medicine, physics, and computer science. Gathering the outcomes of this conference, the book introduces the reader to recent developments and achievements in biocybernetics and biomedical engineering.
This edited volume collects the research results presented at the 14th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Tel Aviv, Israel, 2016. The topical focus includes, but is not limited to, cardiovascular fluid dynamics, computer modeling of tissue engineering, skin and spine biomechanics, as well as biomedical image analysis and processing. The target audience primarily comprises research experts in the field of bioengineering, but the book may also be beneficial for graduate students alike.
An authoritative guide to theory and applications of heat transfer in humans Theory and Applications of Heat Transfer in Humans 2V Set offers a reference to the field of heating and cooling of tissue, and associated damage. The author—a noted expert in the field—presents, in this book, the fundamental physics and physiology related to the field, along with some of the recent applications, all in one place, in such a way as to enable and enrich both beginner and advanced readers. The book provides a basic framework that can be used to obtain ‘decent’ estimates of tissue temperatures for various applications involving tissue heating and/or cooling, and also presents ways to further develop more complex methods, if needed, to obtain more accurate results. The book is arranged in three sections: The first section, named ‘Physics’, presents fundamental mathematical frameworks that can be used as is or combined together forming more complex tools to determine tissue temperatures; the second section, named ‘Physiology’, presents ideas and data that provide the basis for the physiological assumptions needed to develop successful mathematical tools; and finally, the third section, named ‘Applications’, presents examples of how the marriage of the first two sections are used to solve problems of today and tomorrow. This important text is the vital resource that: Offers a reference book in the field of heating and cooling of tissue, and associated damage. Provides a comprehensive theoretical and experimental basis with biomedical applications Shows how to develop and implement both, simple and complex mathematical models to predict tissue temperatures Includes simple examples and results so readers can use those results directly or adapt them for their applications Designed for students, engineers, and other professionals, a comprehensive text to the field of heating and cooling of tissue that includes proven theories with applications. The author reveals how to develop simple and complex mathematical models, to predict tissue heating and/or cooling, and associated damage.
This book highlights recent technological advances, reviews and applications in the field of cardiovascular engineering, including medical imaging, signal processing and informatics, biomechanics, as well as biomaterials. It discusses the use of biomaterials and 3D printing for tissue-engineered heart valves, and also presents a unique combination of engineering and clinical approaches to solve cardiovascular problems. This book is a valuable resource for students, lecturers and researchers in the field of biomedical engineering.
Protective clothing and equipment used for firefighters protect them against their harsh working environment loaded with strong thermal hazards, elevated environmental temperatures, low oxygen concentration and smoke. This book describes an in-depth review of firefighting clothing and equipment, and explicitly addresses the performance of protection and comfort in textile engineering, clothing design, and evaluation. Covered topics include protection and comfort requirements for firefighting clothing and equipment, testing methods, standards and performance evaluation, smart firefighting clothing for first responders and numerical modeling of performance of firefighting clothing. Key Features Presents complete overview about the requirements of firefighters' protective clothing/thermal protective materials Addresses performance of protection and comfort Includes human thermoregulation system and responses to firefighting working environment Discusses SMART firefighting clothing and equipment Suggests "how to improve the wear comfort?
Thousands of people continue to die from heat. Heat illnesses and advice for preventing heat casualties at work, during heatwaves, sport and the effects of global warming are described. A new perspective on thermoregulation integrates physiological and psychophysical regulated variables. Heat stress indices, the WBGT and the SWreq are presented. It is time to understand and routinely use computer simulations of people in hot conditions. How to understand how a model can be constructed is also described. This book provides an accessible, concise and comprehensive coverage into how people respond to heat and how to predict and avoid heat causalities. A practical productivity model, and Burn thresholds, complete the book which begins with up to date knowledge on measurement of heat stress, heat strain, metabolic rate and the thermal properties and influences of clothing. Features Provides methods and regulations through international standards Illustrates the WBGT and analytical heat stress indices and how to construct a thermal model Discusses the role of clothing on heat stress and thermal strain Presents a new model for predicting productivity in the heat Offers a new method of human thermoregulation Considers heat illness and prevention during heatwaves and in global warming
Manikins for Textile Evaluation is a key resource for all those engaged in textile and apparel development and production, and for academics engaged in research into textile science and technology. Creating garments that work with the human form, both stationary and in motion, is a complex task that requires extensive testing and evaluation. Manikins allow for performance testing of textiles in a safe, controlled, and appropriate environment, and are a key element in developing new textile products. Everyday apparel needs to be assessed for comfort, sizing and fit, and ergonomics, while technical and protective garments require extensive safety and performance testing. Manikins therefore range from simple representations of the human body to complex designs that simulate body temperature, sweating, and motion. Manikins are safe for use in hazardous testing environments, such as fire and flame protection, where wearer trials would be impossible. This book provides extensive coverage of manikin-based evaluation of protective, heat and flame resistant, medical, and automotive textile applications. The role of manikins in the development of day-to-day garments is also discussed, including fit, comfort, and ergonomics. The book is a key resource for all those engaged in textile and apparel development and production, and for academics engaged in research into textile science and technology. - Delivers theoretical and practical guidance on evaluation using manikins that is of benefit to anyone developing textile products - Offers a range of perspectives on high-performance textiles from an international team of authors with diverse expertise in academic research, and textile development and manufacture - Provides systematic and comprehensive coverage of the topic from fabric construction, through product development, to the range of current and potential applications that exploit high-performance textile technology
Since the first edition in 1948, Patty’s Industrial Hygiene and Toxicology has become a flagship publication for Wiley. During its nearly seven decades in print, it has become a standard reference for the fields of occupational health and toxicology. The volumes on industrial hygiene are cornerstone reference works for not only industrial hygienists but also chemists, engineers, toxicologists, lawyers, and occupational safety personnel. Volume 3 covers Recognition and Evaluation of Physical Agents and Biohazards. All of the chapters have been updated and a new chapter on Robotics has been added. These subjects are increasing in importance to industrial hygienists.