The Mathematical Theory of Elasticity

The Mathematical Theory of Elasticity

Author: Richard B. Hetnarski

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 837

ISBN-13: 143982889X

DOWNLOAD EBOOK

Through its inclusion of specific applications, The Mathematical Theory of Elasticity, Second Edition continues to provide a bridge between the theory and applications of elasticity. It presents classical as well as more recent results, including those obtained by the authors and their colleagues. Revised and improved, this edition incorporates add


Some Basic Problems of the Mathematical Theory of Elasticity

Some Basic Problems of the Mathematical Theory of Elasticity

Author: N.I. Muskhelishvili

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 746

ISBN-13: 9401730342

DOWNLOAD EBOOK

TO THE FIRST ENGLISH EDITION. In preparing this translation, I have taken the liberty of including footnotes in the main text or inserting them in small type at the appropriate places. I have also corrected minor misprints without special mention .. The Chapters and Sections of the original text have been called Parts and Chapters respectively, where the latter have been numbered consecutively. The subject index was not contained in the Russian original and the authors' index represents an extension of the original list of references. In this way the reader should be able to find quickly the pages on which anyone reference is discussed. The transliteration problem has been overcome by printing the names of Russian authors and journals also in Russian type. While preparing this translation in the first place for my own informa tion, the knowledge that it would also become accessible to a large circle of readers has made the effort doubly worthwhile. I feel sure that the reader will share with me in my admiration for the simplicity and lucidity of presentation.


Elasticity

Elasticity

Author: Adel S. Saada

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 663

ISBN-13: 1483159531

DOWNLOAD EBOOK

Elasticity: Theory and Applications reviews the theory and applications of elasticity. The book is divided into three parts. The first part is concerned with the kinematics of continuous media; the second part focuses on the analysis of stress; and the third part considers the theory of elasticity and its applications to engineering problems. This book consists of 18 chapters; the first of which deals with the kinematics of continuous media. The basic definitions and the operations of matrix algebra are presented in the next chapter, followed by a discussion on the linear transformation of points. The study of finite and linear strains gradually introduces the reader to the tensor concept. Orthogonal curvilinear coordinates are examined in detail, along with the similarities between stress and strain. The chapters that follow cover torsion; the three-dimensional theory of linear elasticity and the requirements for the solution of elasticity problems; the method of potentials; and topics related to cylinders, disks, and spheres. This book also explores straight and curved beams; the semi-infinite elastic medium and some of its related problems; energy principles and variational methods; columns and beam-columns; and the bending of thin flat plates. The final chapter is devoted to the theory of thin shells, with emphasis on geometry and the relations between strain and displacement. This text is intended to give advanced undergraduate and graduate students sound foundations on which to build advanced courses such as mathematical elasticity, plasticity, plates and shells, and those branches of mechanics that require the analysis of strain and stress.


Mathematical Foundations of Elasticity

Mathematical Foundations of Elasticity

Author: Jerrold E. Marsden

Publisher: Courier Corporation

Published: 2012-10-25

Total Pages: 578

ISBN-13: 0486142272

DOWNLOAD EBOOK

Graduate-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It presents a classical subject in a modern setting, with examples of newer mathematical contributions. 1983 edition.


Mathematical Theory of Elastic and Elasto-Plastic Bodies

Mathematical Theory of Elastic and Elasto-Plastic Bodies

Author: J. Necas

Publisher: Elsevier

Published: 2017-02-01

Total Pages: 343

ISBN-13: 148329191X

DOWNLOAD EBOOK

The book acquaints the reader with the basic concepts and relations of elasticity and plasticity, and also with the contemporary state of the theory, covering such aspects as the nonlinear models of elasto-plastic bodies and of large deflections of plates, unilateral boundary value problems, variational principles, the finite element method, and so on.


Elasticity

Elasticity

Author: Martin H. Sadd

Publisher: Elsevier

Published: 2010-08-04

Total Pages: 474

ISBN-13: 008047747X

DOWNLOAD EBOOK

Although there are several books in print dealing with elasticity, many focus on specialized topics such as mathematical foundations, anisotropic materials, two-dimensional problems, thermoelasticity, non-linear theory, etc. As such they are not appropriate candidates for a general textbook. This book provides a concise and organized presentation and development of general theory of elasticity. This text is an excellent book teaching guide. - Contains exercises for student engagement as well as the integration and use of MATLAB Software - Provides development of common solution methodologies and a systematic review of analytical solutions useful in applications of


Mathematical Theory of Elasticity of Quasicrystals and Its Applications

Mathematical Theory of Elasticity of Quasicrystals and Its Applications

Author: Tian-You Fan

Publisher: Springer

Published: 2016-09-20

Total Pages: 462

ISBN-13: 9811019843

DOWNLOAD EBOOK

This interdisciplinary work on condensed matter physics, the continuum mechanics of novel materials, and partial differential equations, discusses the mathematical theory of elasticity and hydrodynamics of quasicrystals, as well as its applications. By establishing new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions, the theories developed here dramatically simplify the solution of complex elasticity problems. Comprehensive and detailed mathematical derivations guide readers through the work. By combining theoretical analysis and experimental data, mathematical studies and practical applications, readers will gain a systematic, comprehensive and in-depth understanding of condensed matter physics, new continuum mechanics and applied mathematics. This new edition covers the latest developments in quasicrystal studies. In particular, it pays special attention to the hydrodynamics, soft-matter quasicrystals, and the Poisson bracket method and its application in deriving hydrodynamic equations. These new sections make the book an even more useful and comprehensive reference guide for researchers working in Condensed Matter Physics, Chemistry and Materials Science.


Nonlinear Problems of Elasticity

Nonlinear Problems of Elasticity

Author: Stuart Antman

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 762

ISBN-13: 1475741472

DOWNLOAD EBOOK

The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.