Single-volume account of methods used in dealing with the many-body problem and the resulting physics. Single-particle approximations, second quantization, many-body perturbation theory, Fermi fluids, superconductivity, many-boson systems, more. Each chapter contains well-chosen problems. Only prerequisite is basic understanding of elementary quantum mechanics. 1967 edition.
Emphasis is placed on analogies between the various systems rather than on advanced or specialized aspects, with the purpose of illustrating common ideas within different domains of physics. Starting from a basic knowledge of quantum mechanics and classical electromagnetism, the exposition is self-contained and explicitly details all steps of the derivations. The new edition features a substantially new treatment of nucleon pairing.
A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
"Unabridged republication of the second edition of the work, originally published in the Pure and applied physics series by Academic Press, Inc., New York, in 1972"--Title page verso.
This comprehensive textbook on the quantum mechanics of identical particles includes a wealth of valuable experimental data, in particular recent results from direct knockout reactions directly related to the single-particle propagator in many-body theory. The comparison with data is incorporated from the start, making the abstract concept of propagators vivid and accessible. Results of numerical calculations using propagators or Green's functions are also presented. The material has been thoroughly tested in the classroom and the introductory chapters provide a seamless connection with a one-year graduate course in quantum mechanics. While the majority of books on many-body theory deal with the subject from the viewpoint of condensed matter physics, this book emphasizes finite systems as well and should be of considerable interest to researchers in nuclear, atomic, and molecular physics. A unified treatment of many different many-body systems is presented using the approach of self-consistent Green's functions. The second edition contains an extensive presentation of finite temperature propagators and covers the technique to extract the self-energy from experimental data as developed in the dispersive optical model.The coverage proceeds systematically from elementary concepts, such as second quantization and mean-field properties, to a more advanced but self-contained presentation of the physics of atoms, molecules, nuclei, nuclear and neutron matter, electron gas, quantum liquids, atomic Bose-Einstein and fermion condensates, and pairing correlations in finite and infinite systems, including finite temperature.
Few-body systems are both technically relatively simple and physically non trivial enough to test theories quantitatively. For instance the He-atom played historically an important role in verifying predictions of QED. A similar role is contributed nowadays to the three-nucleon system as a testing ground far nuclear dynamics and maybe in the near future to few-quark systems. They are also often the basic building blocks for many-body systems like to some extent nuclei, where the real many-body aspect is not the dominant feature. The presentation of the subject given here is based on lectures held at var ious places in the last ten years. The selection of the topics is certainly subjec tive and influenced by my own research interests. The content of the book is simply organized according to the increasing nu mb er of particles treated. Be cause of its conceptual simplicity single particle motion is very suitable for in troducing the basic elements of scattering theory. Using these elements the two-body system is treated for the specific case of two nucleons, which is of great importance in the study of the nuclear interaction. Great space is devoted to the less trivial few-body system consisting of three particles. Again physical examples are taken solely from nuclear physics. Finally the four particle system is discussed so as to familiarize the reader with the techniques required for the formulations of n-bodies in general.
The Quantum Mechanical Three-Body Problem deals with the three-body problem in quantum mechanics. Topics include the two- and three-particle problem, the Faddeev equations and their solution, separable potentials, and variational methods. This book has eight chapters; the first of which introduces the reader to the quantum mechanical three-body problem, its difficulties, and its importance in nuclear physics. Scattering experiments with three-particle breakup are presented. Attention then turns to some concepts of quantum mechanics, with emphasis on two-particle scattering and the Hamiltonian for three particles. The chapters that follow are devoted to the Faddeev equations, including those for scattering states and transition operators, and how such equations can be solved in practice. The solution of the Faddeev equations for separable potentials and local potentials is presented, along with the use of Padé approximation to solve the Faddeev equations. This book concludes with an appraisal of variational methods for bound states, elastic and rearrangement scattering, and the breakup reaction. A promising variational method for solving the Faddeev equations is described. This book will be of value to students interested in three-particle physics and to experimentalists who want to understand better how the theoretical data are derived.
Superb introduction for nonspecialists covers Feynman diagrams, quasi particles, Fermi systems at finite temperature, superconductivity, vacuum amplitude, Dyson's equation, ladder approximation, and more. "A great delight." — Physics Today. 1974 edition.