A unique series of fascinating research papers on subjects related to the work of Niels Henrik Abel, written by some of the foremost specialists in their fields. Some of the authors have been specifically invited to present papers, discussing the influence of Abel in a mathematical-historical context. Others have submitted papers presented at the Abel Bicentennial Conference, Oslo June 3-8, 2002. The idea behind the book has been to produce a text covering a substantial part of the legacy of Abel, as perceived at the beginning of the 21st century.
Everyone with an interest in the history of mathematics and science will enjoy reading this book on one of the most famous mathematicians of the 19th century. The author, who is both a historian and a mathematician, has written the definitive biography of Niels Henrik Abel.
What do Bach's compositions, Rubik's Cube, the way we choose our mates, and the physics of subatomic particles have in common? All are governed by the laws of symmetry, which elegantly unify scientific and artistic principles. Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved. For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory. The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.
Everyone with an interest in the history of mathematics and science will enjoy reading this book on one of the most famous mathematicians of the 19th century. The author, who is both a historian and a mathematician, has written the definitive biography of Niels Henrik Abel.
In the fog of a Paris dawn in 1832, variste Galois, the 20-year-old founder of modern algebra, was shot and killed in a duel. That gunshot, suggests Amir Alexander, marked the end of one era in mathematics and the beginning of another. Arguing that not even the purest mathematics can be separated from its cultural background, Alexander shows how popular stories about mathematicians are really morality tales about their craft as it relates to the world. In the eighteenth century, Alexander says, mathematicians were idealized as child-like, eternally curious, and uniquely suited to reveal the hidden harmonies of the world. But in the nineteenth century, brilliant mathematicians like Galois became Romantic heroes like poets, artists, and musicians. The ideal mathematician was now an alienated loner, driven to despondency by an uncomprehending world. A field that had been focused on the natural world now sought to create its own reality. Higher mathematics became a world unto itselfÑpure and governed solely by the laws of reason. In this strikingly original book that takes us from Paris to St. Petersburg, Norway to Transylvania, Alexander introduces us to national heroes and outcasts, innocents, swindlers, and martyrsÐall uncommonly gifted creators of modern mathematics.
Gösta Mittag-Leffler (1846–1927) played a significant role as both a scientist and entrepreneur. Regarded as the father of Swedish mathematics, his influence extended far beyond his chosen field because of his extensive network of international contacts in science, business, and the arts. He was instrumental in seeing to it that Marie Curie was awarded the Nobel Prize twice. One of Mittag-Leffler’s major accomplishments was the founding of the journal Acta Mathematica , published by Institut Mittag-Leffler and Sweden’s Royal Academy of Sciences. Arild Stubhaug’s research for this monumental biography relied on a wealth of primary and secondary resources, including more than 30000 letters that are part of the Mittag-Leffler archives. Written in a lucid and compelling manner, the biography contains many hitherto unknown facts about Mittag-Leffler’s personal life and professional endeavors. It will be of great interest to both mathematicians and general readers interested in science and culture.
This book is a collection of articles, all by the author, on the Indian mathematical genius Srinivasa Ramanujan as well as on some of the greatest mathematicians throughout the history whose life and works have things in common with Ramanujan. It presents a unique comparative study of Ramanujan’s spectacular discoveries and remarkable life and of the monumental contributions of various mathematical luminaries, some of whom, like Ramanujan, overcame great difficulties in life. In the book, some aspects of Ramanujan’s contributions, such as his remarkable formulae for the number pi, his pathbreaking work in the theory of partitions, and his fundamental observations on quadratic forms, are discussed. Finally, the book describes various current efforts to ensure that the legacy of Ramanujan will be preserved and continue to thrive in the future. Thus the book is an enlightening study of Ramanujan as a mathematician and a human being.
This book primarily serves as a historical research monograph on the biographical sketch and career of Leonhard Euler and his major contributions to numerous areas in the mathematical and physical sciences. It contains fourteen chapters describing Euler''s works on number theory, algebra, geometry, trigonometry, differential and integral calculus, analysis, infinite series and infinite products, ordinary and elliptic integrals and special functions, ordinary and partial differential equations, calculus of variations, graph theory and topology, mechanics and ballistic research, elasticity and fluid mechanics, physics and astronomy, probability and statistics. The book is written to provide a definitive impression of Euler''s personal and professional life as well as of the range, power, and depth of his unique contributions. This tricentennial tribute commemorates Euler the great man and Euler the universal mathematician of all time. Based on the author''s historically motivated method of teaching, special attention is given to demonstrate that Euler''s work had served as the basis of research and developments of mathematical and physical sciences for the last 300 years. An attempt is also made to examine his research and its relation to current mathematics and science. Based on a series of Euler''s extraordinary contributions, the historical development of many different subjects of mathematical sciences is traced with a linking commentary so that it puts the reader at the forefront of current research. Erratum. Sample Chapter(s). Chapter 1: Mathematics Before Leonhard Euler (434 KB). Contents: Mathematics Before Leonhard Euler; Brief Biographical Sketch and Career of Leonhard Euler; Euler''s Contributions to Number Theory and Algebra; Euler''s Contributions to Geometry and Spherical Trigonometry; Euler''s Formula for Polyhedra, Topology and Graph Theory; Euler''s Contributions to Calculus and Analysis; Euler''s Contributions to the Infinite Series and the Zeta Function; Euler''s Beta and Gamma Functions and Infinite Products; Euler and Differential Equations; The Euler Equations of Motion in Fluid Mechanics; Euler''s Contributions to Mechanics and Elasticity; Euler''s Work on the Probability Theory; Euler''s Contributions to Ballistics; Euler and His Work on Astronomy and Physics. Readership: Undergraduate and graduate students of mathematics, mathematics education, physics, engineering and science. As well as professionals and prospective mathematical scientists.