The Influence of Temperature, Fluence, Dose Rate, and Helium Production on Defect Accumulation and Swelling in Silicon Carbide

The Influence of Temperature, Fluence, Dose Rate, and Helium Production on Defect Accumulation and Swelling in Silicon Carbide

Author: A. Kohyama

Publisher:

Published: 2001

Total Pages: 11

ISBN-13:

DOWNLOAD EBOOK

Swelling and microstructure of silicon carbide (SiC) are studied by means of MeV-range ion irradiation. The material used is chemical vapor deposited high purity polycrystalline cubic (3C)-SiC. The swelling behavior is characterized by precision interferometric profilometry following ion bombardment to the diamond-finished surface over a molybdenum micro-mesh. Irradiation was carried out at temperatures up to 873 K, followed by profilometry at room temperature. Microstructural characterization by means of cross-sectional transmission electron microscopy has also been finished for selected materials. Irradiation induced swelling was increased with increasing the displacement damage level up to 0.3 dpa at all evaluated temperatures. At 333 K, the swelling was increased with increasing the damage level up to 1 dpa, and irradiation-induced amorphization was observed over 1.07 dpa. At the higher irradiation temperature, swelling was saturated over 0.3 dpa. The temperature dependence of saturated swelling obtained so far appeared very close to the neutron irradiation data. For the study of the synergism of displacement damage and helium production, a dual-beam experiment was performed up to 100 dpa at 873 K. Swelling of the dual-beam irradiated specimen was larger than that of single-beam irradiated specimen. The result also suggested the onset of unsteady swelling in high He/dpa conditions after "saturated point defect swelling" is once achieved at displacement damage levels over 50 dpa.


Developments in Advanced Ceramics and Composites

Developments in Advanced Ceramics and Composites

Author: Manuel E. Brito

Publisher: John Wiley & Sons

Published: 2009-09-29

Total Pages: 398

ISBN-13: 0470291672

DOWNLOAD EBOOK

Over 40 papers are included in this volume from six symposia held during the 29th International Conference on Advanced Ceramics and Composites. Topics include ceramics and environmental applications, characterization tools for materials in extreme environments, functional nanomaterials, biomimetrics, carbon/carbon and ceramic composite materials in friction, multifunctional materials systems and reliability.


Radiation Effects in Silicon Carbide

Radiation Effects in Silicon Carbide

Author: A.A. Lebedev

Publisher: Materials Research Forum LLC

Published: 2017

Total Pages: 172

ISBN-13: 1945291117

DOWNLOAD EBOOK

The book reviews the most interesting research concerning the radiation defects formed in 6H-, 4H-, and 3C-SiC under irradiation with electrons, neutrons, and some kinds of ions. The electrical parameters that make SiC a promising material for applications in modern electronics are discussed in detail. Specific features of the crystal structure of SiC are considered. It is shown that, when wide-bandgap semiconductors are studied, it is necessary to take into account the temperature dependence of the carrier removal rate, which is a standard parameter for determining the radiation hardness of semiconductors. The carrier removal rate values obtained by irradiation of various SiC polytypes with n- and p-type conductivity are analyzed in relation to the type and energy of the irradiating particles. The influence exerted by the energy of charged particles on how radiation defects are formed and conductivity is compensated in semiconductors under irradiation is analyzed. Furthermore, the possibility to produce controlled transformation of silicon carbide polytype is considered. The involvement of radiation defects in radiative and nonradiative recombination processes in SiC is analyzed. Data are also presented regarding the degradation of particular SiC electronic devices under the influence of radiation and a conclusion is made regarding the radiation resistance of SiC. Lastly, the radiation hardness of devices based on silicon and silicon carbide are compared.


Damage Induced by Helium Implantation in Silicon Carbide

Damage Induced by Helium Implantation in Silicon Carbide

Author: Stéphanie Leclerc

Publisher:

Published: 2007

Total Pages: 137

ISBN-13:

DOWNLOAD EBOOK

In this work, the damage induced by helium implantation in silicon carbide has been studied through XRD and TEM experiments. Combining both XRD experiments and simulations has led us to obtain accurate strain profiles. Implantations have been performed from RT to elevated temperatures to a wide range of fluences. Implantation at RT has been shown to result in a complex picture with mechanisms related to both point defects and helium-vacancy complexes. In particular, helium-vacancy complexes have been seen to strongly influence the strain profile for a concentration of helium exceeding 0.5%. Thresholds for the formation of layers of bubbles and amorphous material have been estimated. This latter depends on the energy of incident ions contrary to what is currently acknowledged. Experiments at elevated temperatures have pointed out two regimes in the damage production as a function of fluence. In the low fluence regime, dynamic annealing occurs in proportion to the defect density over the whole implanted zone. In the high fluence regime, in addition to the dynamic annealing, a migration of interstitial-type defects towards a highly damaged zone has been detected. Both phenomenon lead to a saturation in the near surface strain. Finally, annealing has been performed on the samples implanted at RT. Annealing stages of point defects have been distinguished and related to activation energies. During annealing, strong evolution of the microstructure has been seen to take place in the highly damaged zone. At medium fluences, platelets are formed that collapse into clusters of overpressurized bubbles. These latter induce loop punching which in turn, induces plastic deformation.


A Unique High-temperature, High-pressure Crystal Growth System for Silicon Carbide

A Unique High-temperature, High-pressure Crystal Growth System for Silicon Carbide

Author: J. R. Littler

Publisher:

Published: 1973

Total Pages: 24

ISBN-13:

DOWNLOAD EBOOK

A high-pressure, high-temperature furnace system is described for crystal growth experiments using crucibles up to 13 cm in diameter and 26 cm high. The vertical temperature gradient is electronically controlled during growth such that the ends of the crucible can be maintained at temperatures above or below the crucible center. Temperatures up to 2800C can be maintained at pressures up to 50 atmospheres. A vacuum capability up to .000001 torr at 1800C has been incorporated into the system. Single crystals of alpha silicon carbide grown in this system at 2600C are described to illustrate its use. (Author).