Option Pricing in Fractional Brownian Markets

Option Pricing in Fractional Brownian Markets

Author: Stefan Rostek

Publisher: Springer Science & Business Media

Published: 2009-04-28

Total Pages: 146

ISBN-13: 3642003311

DOWNLOAD EBOOK

Mandelbrot and van Ness (1968) suggested fractional Brownian motion as a parsimonious model for the dynamics of ?nancial price data, which allows for dependence between returns over time. Starting with Rogers(1997) there is an ongoing dispute on the proper usage of fractional Brownian motion in option pricing theory. Problems arise because fractional Brownian motion is not a semimartingale and therefore “no arbitrage pricing” cannot be applied. While this is consensus, the consequences are not as clear. The orthodox interpretation is simply that fractional Brownian motion is an inadequate candidate for a price process. However, as shown by Cheridito (2003) any theoretical arbitrage opportunities disappear by assuming that market p- ticipants cannot react instantaneously. This is the point of departure of Rostek’s dissertation. He contributes to this research in several respects: (i) He delivers a thorough introduction to fr- tional integration calculus and uses the binomial approximation of fractional Brownianmotion to give the reader a ?rst idea of this special market setting.


Stochastic Calculus for Fractional Brownian Motion and Applications

Stochastic Calculus for Fractional Brownian Motion and Applications

Author: Francesca Biagini

Publisher: Springer Science & Business Media

Published: 2008-02-17

Total Pages: 331

ISBN-13: 1846287979

DOWNLOAD EBOOK

The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.


Stochastic Calculus for Fractional Brownian Motion and Related Processes

Stochastic Calculus for Fractional Brownian Motion and Related Processes

Author: Yuliya Mishura

Publisher: Springer Science & Business Media

Published: 2008-01-02

Total Pages: 411

ISBN-13: 3540758720

DOWNLOAD EBOOK

This volume examines the theory of fractional Brownian motion and other long-memory processes. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. It proves that the market with stock guided by the mixed model is arbitrage-free without any restriction on the dependence of the components and deduces different forms of the Black-Scholes equation for fractional market.


White Noise Distribution Theory

White Noise Distribution Theory

Author: Hui-Hsiung Kuo

Publisher: CRC Press

Published: 1996-04-17

Total Pages: 408

ISBN-13: 9780849380778

DOWNLOAD EBOOK

Learn the basics of white noise theory with White Noise Distribution Theory. This book covers the mathematical foundation and key applications of white noise theory without requiring advanced knowledge in this area. This instructive text specifically focuses on relevant application topics such as integral kernel operators, Fourier transforms, Laplacian operators, white noise integration, Feynman integrals, and positive generalized functions. Extremely well-written by one of the field's leading researchers, White Noise Distribution Theory is destined to become the definitive introductory resource on this challenging topic.


Essentials of Stochastic Finance

Essentials of Stochastic Finance

Author: Albert N. Shiryaev

Publisher: World Scientific

Published: 1999

Total Pages: 852

ISBN-13: 9810236050

DOWNLOAD EBOOK

Readership: Undergraduates and researchers in probability and statistics; applied, pure and financial mathematics; economics; chaos.


Monte Carlo Methods and Models in Finance and Insurance

Monte Carlo Methods and Models in Finance and Insurance

Author: Ralf Korn

Publisher: CRC Press

Published: 2010-02-26

Total Pages: 485

ISBN-13: 1420076191

DOWNLOAD EBOOK

Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Rom


Options - 45 Years Since The Publication Of The Black-scholes-merton Model: The Gershon Fintech Center Conference

Options - 45 Years Since The Publication Of The Black-scholes-merton Model: The Gershon Fintech Center Conference

Author: David Gershon

Publisher: World Scientific

Published: 2022-12-21

Total Pages: 554

ISBN-13: 9811259151

DOWNLOAD EBOOK

This book contains contributions by the best-known and consequential researchers who, over several decades, shaped the field of financial engineering. It presents a comprehensive and unique perspective on the historical development and the current state of derivatives research. The book covers classical and modern approaches to option pricing, realized and implied volatilities, classical and rough stochastic processes, and contingent claims analysis in corporate finance. The book is invaluable for students, academic researchers, and practitioners working with financial derivatives, market regulation, trading, risk management, and corporate decision-making.


Rough Volatility

Rough Volatility

Author: Christian Bayer

Publisher: SIAM

Published: 2023-12-18

Total Pages: 292

ISBN-13: 1611977789

DOWNLOAD EBOOK

Volatility underpins financial markets by encapsulating uncertainty about prices, individual behaviors, and decisions and has traditionally been modeled as a semimartingale, with consequent scaling properties. The mathematical description of the volatility process has been an active topic of research for decades; however, driven by empirical estimates of the scaling behavior of volatility, a new paradigm has emerged, whereby paths of volatility are rougher than those of semimartingales. According to this perspective, volatility behaves essentially as a fractional Brownian motion with a small Hurst parameter. The first book to offer a comprehensive exploration of the subject, Rough Volatility contributes to the understanding and application of rough volatility models by equipping readers with the tools and insights needed to delve into the topic, exploring the motivation for rough volatility modeling, providing a toolbox for computation and practical implementation, and organizing the material to reflect the subject’s development and progression. This book is designed for researchers and graduate students in quantitative finance as well as quantitative analysts and finance professionals.


Selected Aspects of Fractional Brownian Motion

Selected Aspects of Fractional Brownian Motion

Author: Ivan Nourdin

Publisher: Springer Science & Business Media

Published: 2013-01-17

Total Pages: 133

ISBN-13: 884702823X

DOWNLOAD EBOOK

Fractional Brownian motion (fBm) is a stochastic process which deviates significantly from Brownian motion and semimartingales, and others classically used in probability theory. As a centered Gaussian process, it is characterized by the stationarity of its increments and a medium- or long-memory property which is in sharp contrast with martingales and Markov processes. FBm has become a popular choice for applications where classical processes cannot model these non-trivial properties; for instance long memory, which is also known as persistence, is of fundamental importance for financial data and in internet traffic. The mathematical theory of fBm is currently being developed vigorously by a number of stochastic analysts, in various directions, using complementary and sometimes competing tools. This book is concerned with several aspects of fBm, including the stochastic integration with respect to it, the study of its supremum and its appearance as limit of partial sums involving stationary sequences, to name but a few. The book is addressed to researchers and graduate students in probability and mathematical statistics. With very few exceptions (where precise references are given), every stated result is proved.


Stochastic Differential Equations and Processes

Stochastic Differential Equations and Processes

Author: Mounir Zili

Publisher: Springer Science & Business Media

Published: 2011-09-24

Total Pages: 273

ISBN-13: 3642223680

DOWNLOAD EBOOK

Selected papers submitted by participants of the international Conference “Stochastic Analysis and Applied Probability 2010” ( www.saap2010.org ) make up the basis of this volume. The SAAP 2010 was held in Tunisia, from 7-9 October, 2010, and was organized by the “Applied Mathematics & Mathematical Physics” research unit of the preparatory institute to the military academies of Sousse (Tunisia), chaired by Mounir Zili. The papers cover theoretical, numerical and applied aspects of stochastic processes and stochastic differential equations. The study of such topic is motivated in part by the need to model, understand, forecast and control the behavior of many natural phenomena that evolve in time in a random way. Such phenomena appear in the fields of finance, telecommunications, economics, biology, geology, demography, physics, chemistry, signal processing and modern control theory, to mention just a few. As this book emphasizes the importance of numerical and theoretical studies of the stochastic differential equations and stochastic processes, it will be useful for a wide spectrum of researchers in applied probability, stochastic numerical and theoretical analysis and statistics, as well as for graduate students. To make it more complete and accessible for graduate students, practitioners and researchers, the editors Mounir Zili and Daria Filatova have included a survey dedicated to the basic concepts of numerical analysis of the stochastic differential equations, written by Henri Schurz.