hp-Finite Element Methods for Singular Perturbations

hp-Finite Element Methods for Singular Perturbations

Author: Jens M. Melenk

Publisher: Springer

Published: 2004-10-19

Total Pages: 331

ISBN-13: 354045781X

DOWNLOAD EBOOK

Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.


p- and hp- Finite Element Methods

p- and hp- Finite Element Methods

Author: C. Schwab

Publisher: Clarendon Press

Published: 1998-10-15

Total Pages: 386

ISBN-13: 9780198503903

DOWNLOAD EBOOK

The finite element method (FEM) is a numerical procedure for solving differential equations. Ever-increasing computing power means that engineers and applied mathematicians are seeking more complicated and sophisticated numerical methods to obtain progressively more accurate answers to problems in solid and fluid mechanics. The p- and hp- finite element methods are just such methods, and are therefore of great current interest. This book is the first to cover comprehensively the mathematical underpinnings of hp-FEM in one and two dimensions and pays particular attention to its applications in engineering.


Robust Numerical Methods for Singularly Perturbed Differential Equations

Robust Numerical Methods for Singularly Perturbed Differential Equations

Author: Hans-Görg Roos

Publisher: Springer Science & Business Media

Published: 2008-09-17

Total Pages: 599

ISBN-13: 3540344675

DOWNLOAD EBOOK

This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.


Partial Differential Equations

Partial Differential Equations

Author: D. Sloan

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 480

ISBN-13: 0080929567

DOWNLOAD EBOOK

/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight into the underlying stability and accuracy properties of computational algorithms for PDEs was deepened by building upon recent progress in mathematical analysis and in the theory of PDEs. To embark on a comprehensive review of the field of numerical analysis of partial differential equations within a single volume of this journal would have been an impossible task. Indeed, the 16 contributions included here, by some of the foremost world authorities in the subject, represent only a small sample of the major developments. We hope that these articles will, nevertheless, provide the reader with a stimulating glimpse into this diverse, exciting and important field. The opening paper by Thomée reviews the history of numerical analysis of PDEs, starting with the 1928 paper by Courant, Friedrichs and Lewy on the solution of problems of mathematical physics by means of finite differences. This excellent survey takes the reader through the development of finite differences for elliptic problems from the 1930s, and the intense study of finite differences for general initial value problems during the 1950s and 1960s. The formulation of the concept of stability is explored in the Lax equivalence theorem and the Kreiss matrix lemmas. Reference is made to the introduction of the finite element method by structural engineers, and a description is given of the subsequent development and mathematical analysis of the finite element method with piecewise polynomial approximating functions. The penultimate section of Thomée's survey deals with `other classes of approximation methods', and this covers methods such as collocation methods, spectral methods, finite volume methods and boundary integral methods. The final section is devoted to numerical linear algebra for elliptic problems. The next three papers, by Bialecki and Fairweather, Hesthaven and Gottlieb and Dahmen, describe, respectively, spline collocation methods, spectral methods and wavelet methods. The work by Bialecki and Fairweather is a comprehensive overview of orthogonal spline collocation from its first appearance to the latest mathematical developments and applications. The emphasis throughout is on problems in two space dimensions. The paper by Hesthaven and Gottlieb presents a review of Fourier and Chebyshev pseudospectral methods for the solution of hyperbolic PDEs. Particular emphasis is placed on the treatment of boundaries, stability of time discretisations, treatment of non-smooth solutions and multidomain techniques. The paper gives a clear view of the advances that have been made over the last decade in solving hyperbolic problems by means of spectral methods, but it shows that many critical issues remain open. The paper by Dahmen reviews the recent rapid growth in the use of wavelet methods for PDEs. The author focuses on the use of adaptivity, where significant successes have recently been achieved. He describes the potential weaknesses of wavelet methods as well as the perceived strengths, thus giving a balanced view that should encourage the study of wavelet methods.


Finite Elements III

Finite Elements III

Author: Alexandre Ern

Publisher: Springer Nature

Published: 2021-03-29

Total Pages: 417

ISBN-13: 3030573486

DOWNLOAD EBOOK

This book is the third volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume III is divided into 28 chapters. The first eight chapters focus on the symmetric positive systems of first-order PDEs called Friedrichs' systems. This part of the book presents a comprehensive and unified treatment of various stabilization techniques from the existing literature. It discusses applications to advection and advection-diffusion equations and various PDEs written in mixed form such as Darcy and Stokes flows and Maxwell's equations. The remainder of Volume III addresses time-dependent problems: parabolic equations (such as the heat equation), evolution equations without coercivity (Stokes flows, Friedrichs' systems), and nonlinear hyperbolic equations (scalar conservation equations, hyperbolic systems). It offers a fresh perspective on the analysis of well-known time-stepping methods. The last five chapters discuss the approximation of hyperbolic equations with finite elements. Here again a new perspective is proposed. These chapters should convince the reader that finite elements offer a good alternative to finite volumes to solve nonlinear conservation equations.


Analyzing Multiscale Phenomena Using Singular Perturbation Methods

Analyzing Multiscale Phenomena Using Singular Perturbation Methods

Author: Jane Cronin

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 201

ISBN-13: 0821809296

DOWNLOAD EBOOK

To understand multiscale phenomena, it is essential to employ asymptotic methods to construct approximate solutions and to design effective computational algorithms. This volume consists of articles based on the AMS Short Course in Singular Perturbations held at the annual Joint Mathematics Meetings in Baltimore (MD). Leading experts discussed the following topics which they expand upon in the book: boundary layer theory, matched expansions, multiple scales, geometric theory, computational techniques, and applications in physiology and dynamic metastability. Readers will find that this text offers an up-to-date survey of this important field with numerous references to the current literature, both pure and applied.


Discontinuous Galerkin Method

Discontinuous Galerkin Method

Author: Vít Dolejší

Publisher: Springer

Published: 2015-07-17

Total Pages: 575

ISBN-13: 3319192671

DOWNLOAD EBOOK

The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.