Integration in Finite Terms

Integration in Finite Terms

Author: Joseph Fels Ritt

Publisher:

Published: 1948

Total Pages: 0

ISBN-13: 9780231915960

DOWNLOAD EBOOK

Gives an account of Liouville's theory of integration in finite terms -- his determination of the form which the integral of an algebraic function must have when the integral can be expressed with the operations of elementary mathematical analysis, carried out a finite number of times -- and the work of some of his followers.


Integration in Finite Terms: Fundamental Sources

Integration in Finite Terms: Fundamental Sources

Author: Clemens G. Raab

Publisher: Springer Nature

Published: 2022-06-06

Total Pages: 303

ISBN-13: 3030987671

DOWNLOAD EBOOK

This volume gives an up-to-date review of the subject Integration in Finite Terms. The book collects four significant texts together with an extensive bibliography and commentaries discussing these works and their impact. These texts, either out of print or never published before, are fundamental to the subject of the book. Applications in combinatorics and physics have aroused a renewed interest in this well-developed area devoted to finding solutions of differential equations and, in particular, antiderivatives, expressible in terms of classes of elementary and special functions.


The Oxford Handbook of the History of Mathematics

The Oxford Handbook of the History of Mathematics

Author: Eleanor Robson

Publisher: Oxford University Press on Demand

Published: 2009

Total Pages: 927

ISBN-13: 0199213127

DOWNLOAD EBOOK

This handbook explores the history of mathematics, addressing what mathematics has been and what it has meant to practise it. 36 self-contained chapters provide a fascinating overview of 5000 years of mathematics and its key cultures for academics in mathematics, historians of science, and general historians.


Analysis by Its History

Analysis by Its History

Author: Ernst Hairer

Publisher: Springer Science & Business Media

Published: 2008-05-30

Total Pages: 390

ISBN-13: 0387770364

DOWNLOAD EBOOK

This book presents first-year calculus roughly in the order in which it was first discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations. The establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. Many quotations are included to give the flavor of the history. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, as well as researchers.


Analysis IV

Analysis IV

Author: Roger Godement

Publisher: Springer

Published: 2015-04-30

Total Pages: 535

ISBN-13: 3319169076

DOWNLOAD EBOOK

Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2). As in volumes I to III, the inimitable style of the author is recognizable here too, not only because of his refusal to write in the compact style used nowadays in many textbooks. The first part (Integration), a wise combination of mathematics said to be `modern' and `classical', is universally useful whereas the second part leads the reader towards a very active and specialized field of research, with possibly broad generalizations.


The Real Numbers and Real Analysis

The Real Numbers and Real Analysis

Author: Ethan D. Bloch

Publisher: Springer Science & Business Media

Published: 2011-05-27

Total Pages: 577

ISBN-13: 0387721762

DOWNLOAD EBOOK

This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.


Excursions in the History of Mathematics

Excursions in the History of Mathematics

Author: Israel Kleiner

Publisher: Springer Science & Business Media

Published: 2012-02-02

Total Pages: 362

ISBN-13: 0817682686

DOWNLOAD EBOOK

This book comprises five parts. The first three contain ten historical essays on important topics: number theory, calculus/analysis, and proof, respectively. Part four deals with several historically oriented courses, and Part five provides biographies of five mathematicians who played major roles in the historical events described in the first four parts of the work. Excursions in the History of Mathematics was written with several goals in mind: to arouse mathematics teachers’ interest in the history of their subject; to encourage mathematics teachers with at least some knowledge of the history of mathematics to offer courses with a strong historical component; and to provide an historical perspective on a number of basic topics taught in mathematics courses.


Symbolic Integration I

Symbolic Integration I

Author: Manuel Bronstein

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 311

ISBN-13: 3662033860

DOWNLOAD EBOOK

This first volume in the series "Algorithms and Computation in Mathematics", is destined to become the standard reference work in the field. Manuel Bronstein is the number-one expert on this topic and his book is the first to treat the subject both comprehensively and in sufficient detail - incorporating new results along the way. The book addresses mathematicians and computer scientists interested in symbolic computation, developers and programmers of computer algebra systems as well as users of symbolic integration methods. Many algorithms are given in pseudocode ready for immediate implementation, making the book equally suitable as a textbook for lecture courses on symbolic integration.


Joseph Liouville 1809–1882

Joseph Liouville 1809–1882

Author: Jesper Lützen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 893

ISBN-13: 1461209897

DOWNLOAD EBOOK

This scientific biography of the mathematician Joseph Liouville is divided into two parts. The first part is a chronological account of Liouville's career including a description of the institutions he worked in, his relations with his teachers, colleagues and students, and the historical context of his works. It portrays the French scientific community in a period when Germany and England had surpassed France as the leading nations in mathematics and physics. The second part of the book gives a detailed analysis of Liouville's major contributions to mathematics and mechanics. The gradual development of Liouville's ideas, as reflected in his publications and notebooks, are related to the works of his predecessors and his contemporaries as well as to later developments in the field. On the basis of Liouville's unpublished notes the book reconstructs Liouville's hitherto unknown theories of stability of rotating masses of fluid, potential theory, Galois theory and electrodynamics. It also incorporates valuable added information from Liouville's notes regarding his works on differentiation of arbitrary order, integration in finite terms, Sturm-Liouville theory, transcendental numbers, doubly periodic functions, geometry and mechanics.