Among the topics featured in this textbook are: congruences; the fundamental theorem of arithmetic; exponentiation and orders; primality testing; the RSA cipher system; polynomials; modules of hypernumbers; signatures of equivalence classes; and the theory of binary quadratic forms. The book contains exercises with answers.
Quadratic Number Theory is an introduction to algebraic number theory for readers with a moderate knowledge of elementary number theory and some familiarity with the terminology of abstract algebra. By restricting attention to questions about squares the author achieves the dual goals of making the presentation accessible to undergraduates and reflecting the historical roots of the subject. The representation of integers by quadratic forms is emphasized throughout the text. Lehman introduces an innovative notation for ideals of a quadratic domain that greatly facilitates computation and he uses this to particular effect. The text has an unusual focus on actual computation. This focus, and this notation, serve the author's historical purpose as well; ideals can be seen as number-like objects, as Kummer and Dedekind conceived of them. The notation can be adapted to quadratic forms and provides insight into the connection between quadratic forms and ideals. The computation of class groups and continued fraction representations are featured—the author's notation makes these computations particularly illuminating. Quadratic Number Theory, with its exceptionally clear prose, hundreds of exercises, and historical motivation, would make an excellent textbook for a second undergraduate course in number theory. The clarity of the exposition would also make it a terrific choice for independent reading. It will be exceptionally useful as a fruitful launching pad for undergraduate research projects in algebraic number theory.
This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.
In 19th century America, Joseph Ray was the McGuffey of arithmetic. His textbooks, used throughout the United States, laid the mathematical foundations for the generations of inventors, engineers and businessmen who would make the nation a world power.
This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.