George Krauss, University Emeritus Professor, Colorado School of Mines and author of the best-selling ASM book Steels: Processing, Structure, and Performance, discusses some of the important additions and updates to the new second edition.
A comprehensive exposition of the structure of steels and the effects of different heat treatments, particularly in respect of tools. It includes solid fuel, gas and electric furnaces, case hardening, tempering and other practical information. Features accurate colour temperature charts.
Steel and its Heat Treatment: Bofors Handbook describes the fundamental metallographic concepts, materials testing, hardenability, heat treatment, and dimensional changes that occur during the hardening and tempering stages of steel. The book explains the boundaries separating the grain contents of steel, which are the low-angle grain boundaries, the high-angle grain boundaries, and the twinning boundaries. Engineers can determine the hardenability of steel through the Grossman test or the Jominy End-Quench test. Special hardening and tempering methods are employed for steel that are going to be fabricated into tools. The different methods of hardening are manual hardening for a small surface (the tip of a screw); spin hardening for objects with a rotational symmetry (gears with 5 modules or less); and progressive hardening (or a combination with spin hardening) for flat surfaces. The hardening and tempering processes cause changes in size and shape of the substance. The text presents examples of dimensional changes during the hardening and tempering of tool steels such as those occurring in plain-carbon steels and low-alloy steels. The book is a source of reliable information needed by engineers, tool and small equipment designers, as well as by metallurgists, structural, and mechanical engineers.
This vintage book contains a collection of classic articles on the subject of the hardening and tempering in blacksmithing, taking the reader through the processes in a factory setting. First published in 1909, these articles contain a wealth of timeless information regarding the subject's history. They detail industrial hardening plants, information on chemicals used for heating and hardening, and guides for industrial tool work. Articles featured in this book include: - Hardening Steel – by E. R. Markham - Forging, Hardening and Annealing High-Speed Steel – by W. J. Todd - Local Hardening and Tempering – by William A. Painter A concise volume not to be missed by the modern blacksmithing enthusiasts and is reprinted here by Read & Co. Books with a new, specially commissioned introduction on blacksmithing.
Steels and their heat treatment are still very important in modern industry because most industrial components are made from these materials. The proper choice of steel grades along with their suitable processing makes it possible to reduce the weight of the components, which is closely related to energy and fuel savings. This has decisive importance in branches such as the automotive, transport, consumer industries. A great number of novel heat- and surface-treatment techniques have been developed over the past three decades. These techniques involve, for example, vacuum treatment, sub-zero treatment, laser/electron beam surface hardening and alloying, low-pressure carburizing and nitriding, and physical vapour deposition. This Special Issue contains a collection of original research articles on not only advanced heat-treatment techniques—carburizing and sub-zero treatments—but also on the microstructure–property relationships in different ferrous alloys.
Steels: Processing, Structure, and Performance is a comprehensive guide to the broad, dynamic physical metallurgy of steels. The volume is an extensively revised and updated edition of the classic 1990 book Steels: Heat Treatment and Processing Principles. Eleven new chapters expand the coverage in the previous edition, and other chapters have been reorganized and updated. This volume is an essential reference for anyone who makes, uses, studies, or designs with steel. The interrelationships between chemistry, processing, structure, and performance--the elements of physical metallurgy--are integrated for all the types of steel discussed.
One of two self-contained volumes belonging to the newly revised Steel Heat Treatment Handbook, Second Edition, this book examines the behavior and processes involved in modern steel heat treatment applications. Steel Heat Treatment: Metallurgy and Technologies presents the principles that form the basis of heat treatment processes while incorporating detailed descriptions of advances emerging since the 1997 publication of the first edition. Revised, updated, and expanded, this book ensures up-to-date and thorough discussions of how specific heat treatment processes and different alloy elements affect the structure and the classification and mechanisms of steel transformation, distortion of properties of steel alloys. The book includes entirely new chapters on heat-treated components, and the treatment of tool steels, stainless steels, and powder metallurgy steel components. Steel Heat Treatment: Metallurgy and Technologies provides a focused resource for everyday use by advanced students and practitioners in metallurgy, process design, heat treatment, and mechanical and materials engineering.
This book has been created on the basis of contributions to the 54th International Conference of Machine Design Departments that was held for the 60th anniversary of Technical University of Liberec. This international conference which follows a tradition going back more than 50 years is one of the longest-running series of conferences held in central Europe, dealing with methods and applications in machine design. The main aim of the conference was to provide an international forum where experts, researchers, engineers and industrial practitioners, managers and Ph.D. students could meet, share their experiences and present the results of their efforts in the broad field of machine design and related fields. The book has seven chapters which focus on new knowledge of machine design, optimization, tribology, experimental methods and measuring, engineering analyses and product innovation. Authors presented new design methods of machine parts and more complex assemblies with the help of numerical methods such as FEM. Research, measurements and studies of new materials, including composites for energy-efficient constructions are also described. The book also includes solutions and results useful for optimization and innovation of complex design problems in various industries.