Following the work of Yorke and Li in 1975, the theory of discrete dynamical systems and difference equations developed rapidly. The applications of difference equations also grew rapidly, especially with the introduction of graphical-interface software that can plot trajectories, calculate Lyapunov exponents, plot bifurcation diagrams, and find ba
This volume constitutes the proceedings of the International Conference on Dynamical Systems in Honor of Prof. Liao Shantao (1920-97). The Third World Academy of Sciences awarded the first ever mathematics prize in 1985 to Prof. Liao in recognition of his foundational work in differentiable dynamical systems and his work in periodic transformation of spheres. The conference was held in Beijing in August 1998. There were about 90 participants, and nearly 60 talks were delivered.The topics covered include differentiable dynamics, topological dynamics, hamiltonian dynamics, complex dynamics, ergodic and stochastic dynamics, and fractals theory. Dynamical systems is a field with many difficult problems, and techniques are being developed to deal with those problems. This volume contains original studies of great mathematical depth and presents some of the fascinating numerical experiments.
Chaotic behavior of (even the simplest) iterations of polynomial maps of the complex plane was known for almost one hundred years due to the pioneering work of Farou, Julia, and their contemporaries. However, it was only twenty-five years ago that the first computer generated images illustrating properties of iterations of quadratic maps appeared. These images of the so-called Mandelbrot and Julia sets immediately resulted in a strong resurgence of interest in complex dynamics. The present volume, based on the talks at the conference commemorating the twenty-fifth anniversary of the appearance of Mandelbrot sets, provides a panorama of current research in this truly fascinating area of mathematics.
The articles collected in this volume represent the contributions presented at the IMA workshop on "Dynamics of Algorithms" which took place in November 1997. The workshop was an integral part of the 1997 -98 IMA program on "Emerging Applications of Dynamical Systems." The interaction between algorithms and dynamical systems is mutually beneficial since dynamical methods can be used to study algorithms that are applied repeatedly. Convergence, asymptotic rates are indeed dynamical properties. On the other hand, the study of dynamical systems benefits enormously from having efficient algorithms to compute dynamical objects.
The essays in this special volume survey some of the most recent advances in the global analysis of dynamic models for economics, finance and the social sciences. They deal in particular with a range of topics from mathematical methods as well as numerous applications including recent developments on asset pricing, heterogeneous beliefs, global bifurcations in complementarity games, international subsidy games and issues in economic geography. A number of stochastic dynamic models are also analysed. The book is a collection of essays in honour of the 60th birthday of Laura Gardini.
In the last twenty years, the theory of holomorphic dynamical systems has had a resurgence of activity, particularly concerning the fine analysis of Julia sets associated with polynomials and rational maps in one complex variable. At the same time, closely related theories have had a similar rapid development, for example the qualitative theory of differential equations in the complex domain. The meeting, ``Etat de la recherche'', held at Ecole Normale Superieure de Lyon, presented the current state of the art in this area, emphasizing the unity linking the various sub-domains. This volume contains four survey articles corresponding to the talks presented at this meeting. D. Cerveau describes the structure of polynomial differential equations in the complex plane, focusing on the local analysis in neighborhoods of singular points. E. Ghys surveys the theory of laminations by Riemann surfaces which occur in many dynamical or geometrical situations. N. Sibony describes the present state of the generalization of the Fatou-Julia theory for polynomial or rational maps in two or more complex dimensions. Lastly, the talk by J.-C. Yoccoz, written by M. Flexor, considers polynomials of degree $2$ in one complex variable, and in particular, with the hyperbolic properties of these polynomials centered around the Jakobson theorem. This is a general introduction that gives a basic history of holomorphic dynamical systems, demonstrating the numerous and fruitful interactions among the topics. In the spirit of the ``Etat de la recherche de la SMF'' meetings, the articles are written for a broad mathematical audience, especially students or mathematicians working in different fields. This book is translated from the French edition by Leslie Kay.
Until recently, measurable dynamics has been held as a highly theoretical mathematical topic with few generally known obvious links for practitioners in areas of applied mathematics. However, the advent of high-speed computers, rapidly developing algorithms, and new numerical methods has allowed for a tremendous amount of progress and sophistication in efforts to represent the notion of a transfer operator discretely but to high resolution. This book connects many concepts in dynamical systems with mathematical tools from areas such as graph theory and ergodic theory. The authors introduce practical tools for applications related to measurable dynamical systems, coherent structures, and transport problems. The new and fast-developing computational tools discussed throughout the book allow for detailed analysis of real-world problems that are simply beyond the reach of traditional methods.