The Utility of Regional Gravity and Magnetic Anomaly Maps

The Utility of Regional Gravity and Magnetic Anomaly Maps

Author: William J. Hinze

Publisher:

Published: 1985

Total Pages: 480

ISBN-13:

DOWNLOAD EBOOK

The subjects of the papers that make up the volume vary from the preparation of national maps to examples of the many uses of regional maps. The anomalities that are discussed range in areal dimension from hundreds of kilometers to tons of meters. The majority of the papers illustrate the utility of the maps in mapping structures and lithologic variations wirhin the continenetal crust, the configuration of the crystalline basements rocks, zones of crustal weakness, distribution of extrusive and intrusive igneous rocks and the geometry of sedimentary basins. Most cases are drawn from the United States and Canada, but examples from Europe, Africa, South America and Asia are included.


Gravity and Magnetic Exploration

Gravity and Magnetic Exploration

Author: William J. Hinze

Publisher: Cambridge University Press

Published: 2013-03-14

Total Pages: 527

ISBN-13: 0521871018

DOWNLOAD EBOOK

This combination of textbook and reference manual provides a comprehensive account of gravity and magnetic methods for exploring the subsurface using surface, marine, airborne and satellite measurements. It describes key current topics and techniques, physical properties of rocks and other Earth materials, and digital data analysis methods used to process and interpret anomalies for subsurface information. Each chapter starts with an overview and concludes by listing key concepts to consolidate new learning. An accompanying website presents problem sets and interactive computer-based exercises, providing hands-on experience of processing, modeling and interpreting data. A comprehensive online suite of full-color case histories illustrates the practical utility of modern gravity and magnetic surveys. This is an ideal text for advanced undergraduate and graduate courses and reference text for research academics and professional geophysicists. It is a valuable resource for all those interested in petroleum, engineering, mineral, environmental, geological and archeological exploration of the lithosphere.


Potential Theory in Gravity and Magnetic Applications

Potential Theory in Gravity and Magnetic Applications

Author: Richard J. Blakely

Publisher: Cambridge University Press

Published: 1996-09-13

Total Pages: 468

ISBN-13: 9780521575478

DOWNLOAD EBOOK

This text bridges the gap between the classic texts on potential theory and modern books on applied geophysics. It opens with an introduction to potential theory, emphasising those aspects particularly important to earth scientists, such as Laplace's equation, Newtonian potential, magnetic and electrostatic fields, and conduction of heat. The theory is then applied to the interpretation of gravity and magnetic anomalies, drawing on examples from modern geophysical literature. Topics explored include regional and global fields, forward modeling, inverse methods, depth-to-source estimation, ideal bodies, analytical continuation, and spectral analysis. The book includes numerous exercises and a variety of computer subroutines written in FORTRAN. Graduate students and researchers in geophysics will find this book essential.


Applications of Gravity Anomalies in Geophysics

Applications of Gravity Anomalies in Geophysics

Author: Henglei Zhang

Publisher: Frontiers Media SA

Published: 2024-01-26

Total Pages: 151

ISBN-13: 2832543553

DOWNLOAD EBOOK

Knowledge of the density of the subsurface of a planet is crucial in determining its interior structure, and one can estimate the average bulk crustal density directly using the admittance between topography and gravity, which has been successfully used for the Moon and is being extended to Mars. The interpretation of gravity data is commonly done by computation of a gravity anomaly (GA) by correcting the raw data for a number of factors that impact the gravity field. Depending on the target science, different types of GA can be computed, the interpretation of which have been widely employed in geophysics to explore the interior of the Earth and other planets, through applications in airborne gravity, near-surface geophysics, regional geophysics, and planetary geophysics. Yet how to extract a great variety of information from GAs for applications in geophysics entails further investigation. Over the decades, remarkable progress has been made to extract information from GAs identified from data. For instance, a series of 3D inversion algorithms facilitates the extraction of the subsurface density distribution. With the improved processing based on dense gravity observations that yield high precision and high resolution GAs, more detailed geological information can be unveiled. When using the admittance between topography and gravity to estimate the crustal density, it is essential to identify what kinds of GAs to be used, such as Bouguer gravity or free-air gravity. Also, what appropriate approaches to scrutinize the applications of GAs in various case studies (e.g., calculating the geoid and estimating the elastic thickness) need to be decoded.


Fundamentals of Gravity Exploration

Fundamentals of Gravity Exploration

Author: Thomas R. LaFehr

Publisher:

Published: 2012

Total Pages: 218

ISBN-13: 9781560803058

DOWNLOAD EBOOK

Providing information about the principles, understanding, and applicability of the gravity exploration method, this text is both a textbook and a reference for anyone engaged in geophysical exploration.


Gravity Interpretation

Gravity Interpretation

Author: Wolfgang Jacoby

Publisher: Springer Science & Business Media

Published: 2009-02-01

Total Pages: 413

ISBN-13: 3540853294

DOWNLOAD EBOOK

Gravity interpretation involves inversion of data into models, but it is more. Gravity interpretation is used in a “holistic” sense going beyond “inversion”. Inversion is like optimization within certain a priori assumptions, i.e., all anticipated models lie in a limited domain of the a priori errors. No source should exist outside the anticipated model volume, but that is never literally true. Interpretation goes beyond by taking “outside” possibilities into account in the widest sense. Any neglected possibility carries the danger of seriously affecting the interpretation. Gravity interpretation pertains to wider questions such as the shape of the Earth, the nature of the continental and oceanic crust, isostasy, forces and stresses, geol- ical structure, nding useful resources, climate change, etc. Interpretation is often used synonymously with modelling and inversion of observations toward models. Interpretation places the inversion results into the wider geological or economic context and into the framework of science and humanity. Models play a central role in science. They are images of phenomena of the physical world, for example, scale images or metaphors, enabling the human mind to describe observations and re- tionships by abstract mathematical means. Models served orientation and survival in a complex, partly invisible physical and social environment.


Isostasy and Flexure of the Lithosphere

Isostasy and Flexure of the Lithosphere

Author: A. B. Watts

Publisher: Cambridge University Press

Published: 2023-09-30

Total Pages: 605

ISBN-13: 1009278924

DOWNLOAD EBOOK

A unique overview of isostasy featuring recent advances in spectral data analysis and understanding of variations in lithospheric strength.


Encyclopedia of Solid Earth Geophysics

Encyclopedia of Solid Earth Geophysics

Author: Harsh Gupta

Publisher: Springer Science & Business Media

Published: 2011-06-29

Total Pages: 1579

ISBN-13: 904818701X

DOWNLOAD EBOOK

The past few decades have witnessed the growth of the Earth Sciences in the pursuit of knowledge and understanding of the planet that we live on. This development addresses the challenging endeavor to enrich human lives with the bounties of Nature as well as to preserve the planet for the generations to come. Solid Earth Geophysics aspires to define and quantify the internal structure and processes of the Earth in terms of the principles of physics and forms the intrinsic framework, which other allied disciplines utilize for more specific investigations. The first edition of the Encyclopedia of Solid Earth Geophysics was published in 1989 by Van Nostrand Reinhold publishing company. More than two decades later, this new volume, edited by Prof. Harsh K. Gupta, represents a thoroughly revised and expanded reference work. It brings together more than 200 articles covering established and new concepts of Geophysics across the various sub-disciplines such as Gravity, Geodesy, Geomagnetism, Seismology, Seismics, Deep Earth Processes, Plate Tectonics, Thermal Domains, Computational Methods, etc. in a systematic and consistent format and standard. It is an authoritative and current reference source with extraordinary width of scope. It draws its unique strength from the expert contributions of editors and authors across the globe. It is designed to serve as a valuable and cherished source of information for current and future generations of professionals.


Bouguer Gravity Regional and Residual Separation

Bouguer Gravity Regional and Residual Separation

Author: K. Mallick

Publisher: Springer Science & Business Media

Published: 2012-03-05

Total Pages: 301

ISBN-13: 9400704062

DOWNLOAD EBOOK

The process of regional-residual separation in potential field is age-old. Broadly, there are two techniques for regional-residual resolution, viz., graphical and analytical. Both the techniques have their own respective shortcomings. In this book, the authors have described the technique based on finite element method in which only eight (or twelve) nodal observed gravity values are used for the regional computation, thereby eliminating the possible contamination of anomalous fields and also the technique does not assume an explicit model and physical properties like density of rocks etc. in the regional computation. The book discusses the advantages of this technique viz., it is not site-specific; the computation is independent of any prior assumptions as to the form and depth of shallow or deeper structures; it can handle data distributed at random or on a regular grid on the map space; and the neighbouring surveys join smoothly. The book focuses on application of this new technique which has been demonstrated in different fields, such as hydrocarbon, minerals and groundwater, structural studies, earthquake and engineering studies and impact structures.