This book is an English translation of a text written by Constantin Mihalescu, a retired artillery colonel and enthusiastic amateur mathematician. With the majority of the results obtained in the second half of the 19th century and the first half of the 20th century, this book was one of the most complete descriptions of geometry of its time. It contains a comprehensive collection of the most important properties of points, lines, and circles related to triangles and quadrilaterals, as they were known by the mid-1950s, and a rich assortment of problems to entice and inspire readers of all levels. Topics covered include the nine-point circle, the Simson line, the orthopolar triangles, the orthopole, the Gergonne and Nagel points, the Miquel point and circle, the Carnot circle, the Brocard points, the Lemoine point and circles, the Newton-Gauss line, and much more.
A sweeping cultural history of one of the most influential mathematical books ever written Euclid's Elements of Geometry is one of the fountainheads of mathematics—and of culture. Written around 300 BCE, it has traveled widely across the centuries, generating countless new ideas and inspiring such figures as Isaac Newton, Bertrand Russell, Abraham Lincoln, and Albert Einstein. Encounters with Euclid tells the story of this incomparable mathematical masterpiece, taking readers from its origins in the ancient world to its continuing influence today. In this lively and informative book, Benjamin Wardhaugh explains how Euclid’s text journeyed from antiquity to the Renaissance, introducing some of the many readers, copyists, and editors who left their mark on the Elements before handing it on. He shows how some read the book as a work of philosophy, while others viewed it as a practical guide to life. He examines the many different contexts in which Euclid's book and his geometry were put to use, from the Neoplatonic school at Athens and the artisans' studios of medieval Baghdad to the Jesuit mission in China and the workshops of Restoration London. Wardhaugh shows how the Elements inspired ideas in theology, art, and music, and how the book has acquired new relevance to the strange geometries of dark matter and curved space. Encounters with Euclid traces the life and afterlives of one of the most remarkable works of mathematics ever written, revealing its lasting role in the timeless search for order and reason in an unruly world.
Within cognitive science, two approaches currently dominate the problem of modeling representations. The symbolic approach views cognition as computation involving symbolic manipulation. Connectionism, a special case of associationism, models associations using artificial neuron networks. Peter Gärdenfors offers his theory of conceptual representations as a bridge between the symbolic and connectionist approaches. Symbolic representation is particularly weak at modeling concept learning, which is paramount for understanding many cognitive phenomena. Concept learning is closely tied to the notion of similarity, which is also poorly served by the symbolic approach. Gärdenfors's theory of conceptual spaces presents a framework for representing information on the conceptual level. A conceptual space is built up from geometrical structures based on a number of quality dimensions. The main applications of the theory are on the constructive side of cognitive science: as a constructive model the theory can be applied to the development of artificial systems capable of solving cognitive tasks. Gärdenfors also shows how conceptual spaces can serve as an explanatory framework for a number of empirical theories, in particular those concerning concept formation, induction, and semantics. His aim is to present a coherent research program that can be used as a basis for more detailed investigations.
This remarkable book has endured as a true masterpiece of mathematical exposition. There are few mathematics books that are still so widely read and continue to have so much to offer—even after more than half a century has passed! The book is overflowing with mathematical ideas, which are always explained clearly and elegantly, and above all, with penetrating insight. It is a joy to read, both for beginners and experienced mathematicians. “Hilbert and Cohn-Vossen” is full of interesting facts, many of which you wish you had known before. It's also likely that you have heard those facts before, but surely wondered where they could be found. The book begins with examples of the simplest curves and surfaces, including thread constructions of certain quadrics and other surfaces. The chapter on regular systems of points leads to the crystallographic groups and the regular polyhedra in R 3 R3. In this chapter, they also discuss plane lattices. By considering unit lattices, and throwing in a small amount of number theory when necessary, they effortlessly derive Leibniz's series: π/4=1−1/3+1/5−1/7+−… π/4=1−1/3+1/5−1/7+−…. In the section on lattices in three and more dimensions, the authors consider sphere-packing problems, including the famous Kepler problem. One of the most remarkable chapters is “Projective Configurations”. In a short introductory section, Hilbert and Cohn-Vossen give perhaps the most concise and lucid description of why a general geometer would care about projective geometry and why such an ostensibly plain setup is truly rich in structure and ideas. Here, we see regular polyhedra again, from a different perspective. One of the high points of the chapter is the discussion of Schlafli's Double-Six, which leads to the description of the 27 lines on the general smooth cubic surface. As is true throughout the book, the magnificent drawings in this chapter immeasurably help the reader. A particularly intriguing section in the chapter on differential geometry is Eleven Properties of the Sphere. Which eleven properties of such a ubiquitous mathematical object caught their discerning eye and why? Many mathematicians are familiar with the plaster models of surfaces found in many mathematics departments. The book includes pictures of some of the models that are found in the Göttingen collection. Furthermore, the mysterious lines that mark these surfaces are finally explained! The chapter on kinematics includes a nice discussion of linkages and the geometry of configurations of points and rods that are connected and, perhaps, constrained in some way. This topic in geometry has become increasingly important in recent times, especially in applications to robotics. This is another example of a simple situation that leads to a rich geometry. It would be hard to overestimate the continuing influence Hilbert-Cohn-Vossen's book has had on mathematicians of this century. It surely belongs in the “pantheon” of great mathematics books.
This edition of the Elements of Euclid, undertaken at the request of the principalsof some of the leading Colleges and Schools of Ireland, is intended tosupply a want much felt by teachers at the present day-the production of awork which, while giving the unrivalled original in all its integrity, would alsocontain the modern conceptions and developments of the portion of Geometryover which the Elements extend. A cursory examination of the work will showthat the Editor has gone much further in this latter direction than any of hispredecessors, for it will be found to contain, not only more actual matter thanis given in any of theirs with which he is acquainted, but also much of a specialcharacter, which is not given, so far as he is aware, in any former work on thesubject. The great extension of geometrical methods in recent times has madesuch a work a necessity for the student, to enable him not only to read with advantage, but even to understand those mathematical writings of modern timeswhich require an accurate knowledge of Elementary Geometry, and to which itis in reality the best introduction
In this groundbreaking book, Tymoczko uses contemporary geometry to provide a new framework for thinking about music, one that emphasizes the commonalities among styles from Medieval polyphony to contemporary jazz.
Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.
Euclid's Elements is a mathematical and geometric treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt circa 300 BC. It is a collection of definitions, postulates (axioms), propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover Euclidean geometry and the ancient Greek version of elementary number theory. The work also includes an algebraic system that has become known as geometric algebra, which is powerful enough to solve many algebraic problems, including the problem of finding the square root of a number. Elements is the second-oldest extant Greek mathematical treatise after Autolycus' On the Moving Sphere, and it is the oldest extant axiomatic deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science. According to Proclus, the term "element" was used to describe a theorem that is all-pervading and helps furnishing proofs of many other theorems. The word 'element' in the Greek language is the same as 'letter'. This suggests that theorems in the Elements should be seen as standing in the same relation to geometry as letters to language. Later commentators give a slightly different meaning to the term element, emphasizing how the propositions have progressed in small steps, and continued to build on previous propositions in a well-defined order.
How can we be sure that Pythagoras's theorem is really true? Why is the 'angle in a semicircle' always 90 degrees? And how can tangents help determine the speed of a bullet? David Acheson takes the reader on a highly illustrated tour through the history of geometry, from ancient Greece to the present day. He emphasizes throughout elegant deduction and practical applications, and argues that geometry can offer the quickest route to the whole spirit of mathematics at its best. Along the way, we encounter the quirky and the unexpected, meet the great personalities involved, and uncover some of the loveliest surprises in mathematics.