Computational Geometry of Positive Definite Quadratic Forms

Computational Geometry of Positive Definite Quadratic Forms

Author: Achill Schurmann

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 183

ISBN-13: 082184735X

DOWNLOAD EBOOK

"Starting from classical arithmetical questions on quadratic forms, this book takes the reader step by step through the connections with lattice sphere packing and covering problems. As a model for polyhedral reduction theories of positive definite quadratic forms, Minkowski's classical theory is presented, including an application to multidimensional continued fraction expansions. The reduction theories of Voronoi are described in great detail, including full proofs, new views, and generalizations that cannot be found elsewhere. Based on Voronoi's second reduction theory, the local analysis of sphere coverings and several of its applications are presented. These include the classification of totally real thin number fields, connections to the Minkowski conjecture, and the discovery of new, sometimes surprising, properties of exceptional structures such as the Leech lattice or the root lattices." "Throughout this book, special attention is paid to algorithms and computability, allowing computer-assisted treatments. Although dealing with relatively classical topics that have been worked on extensively by numerous authors, this book is exemplary in showing how computers may help to gain new insights."--BOOK JACKET.


The Algebraic and Geometric Theory of Quadratic Forms

The Algebraic and Geometric Theory of Quadratic Forms

Author: Richard S. Elman

Publisher: American Mathematical Soc.

Published: 2008-07-15

Total Pages: 456

ISBN-13: 9780821873229

DOWNLOAD EBOOK

This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages of the development of the theory. Assuming only a basic course in algebraic geometry, Part II presents the necessary additional topics from algebraic geometry including the theory of Chow groups, Chow motives, and Steenrod operations. These topics are used in Part III to develop a modern geometric theory of quadratic forms.


Quadratic Forms and Their Applications

Quadratic Forms and Their Applications

Author: Eva Bayer-Fluckiger

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 330

ISBN-13: 0821827790

DOWNLOAD EBOOK

This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.


Rational Quadratic Forms

Rational Quadratic Forms

Author: J. W. S. Cassels

Publisher: Courier Dover Publications

Published: 2008-08-08

Total Pages: 429

ISBN-13: 0486466701

DOWNLOAD EBOOK

Exploration of quadratic forms over rational numbers and rational integers offers elementary introduction. Covers quadratic forms over local fields, forms with integral coefficients, reduction theory for definite forms, more. 1968 edition.


Contributions to Geometry

Contributions to Geometry

Author: WILLS

Publisher: Birkhäuser

Published: 2013-11-11

Total Pages: 399

ISBN-13: 3034857659

DOWNLOAD EBOOK

During the time from June 28-July 1, 1978, representatives of different branches of geometry met in Siegen for discussion of and reports on current problems. In particular, the survey lectures, presented by well known geometers, gave nonspecialists the welcome opportunity to learn about the questions posed, the methods used and the results obtained in different areas of the field of geometry. The research areas represented at the meeting in Siegen are reflected in the list of participants and their contributions: Ranging from geometric convexity and related topics to differential geometry and kinematics. The foundations of geometry, an area well established in Germany, was also represented. It is a pleasure to thank all the lecturers as well as other participants in the Geometry Symposium for their contribution to the success of the meeting. We also thank the "Minister fUr Wissenschaft und Forschung des Landes Nordrhein-Westfalen" and the University of Siegen for their generous support which helped make the Symposium so successful. In order to make the contributions and results of the Symposium accessible to the general public, the publication of a proceedings volume was planned. The idea was to give a summary of a wide spectrum of research in geometr- through survey articles and original research papers.


The Geometry of Numbers

The Geometry of Numbers

Author: C. D. Olds

Publisher: Cambridge University Press

Published: 2001-02-22

Total Pages: 198

ISBN-13: 9780883856437

DOWNLOAD EBOOK

A self-contained introduction to the geometry of numbers.