Computational Problems in Abstract Algebra

Computational Problems in Abstract Algebra

Author: John Leech

Publisher: Elsevier

Published: 2014-05-17

Total Pages: 413

ISBN-13: 1483159426

DOWNLOAD EBOOK

Computational Problems in Abstract Algebra provides information pertinent to the application of computers to abstract algebra. This book discusses combinatorial problems dealing with things like generation of permutations, projective planes, orthogonal latin squares, graphs, difference sets, block designs, and Hadamard matrices. Comprised of 35 chapters, this book begins with an overview of the methods utilized in and results obtained by programs for the investigation of groups. This text then examines the method for establishing the order of a finite group defined by a set of relations satisfied by its generators. Other chapters describe the modification of the Todd–Coxeter coset enumeration process. This book discusses as well the difficulties that arise with multiplication and inverting programs, and of some ways to avoid or overcome them. The final chapter deals with the computational problems related to invariant factors in linear algebra. Mathematicians as well as students of algebra will find this book useful.


Classical Algebraic Geometry

Classical Algebraic Geometry

Author: Igor V. Dolgachev

Publisher: Cambridge University Press

Published: 2012-08-16

Total Pages: 653

ISBN-13: 1139560786

DOWNLOAD EBOOK

Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.


Lectures on Invariant Theory

Lectures on Invariant Theory

Author: Igor Dolgachev

Publisher: Cambridge University Press

Published: 2003-08-07

Total Pages: 244

ISBN-13: 9780521525480

DOWNLOAD EBOOK

The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.


Projective Geometries Over Finite Fields

Projective Geometries Over Finite Fields

Author: James William Peter Hirschfeld

Publisher: Oxford University Press on Demand

Published: 1998

Total Pages: 555

ISBN-13: 9780198502951

DOWNLOAD EBOOK

I. Introduction 1. Finite fields 2. Projective spaces and algebraic varieties II. Elementary general properties 3. Subspaces 4. Partitions 5. Canonical forms for varieties and polarities III. The line and the plane 6. The line 7. First properties of the plane 8. Ovals 9. Arithmetic of arcs of degree two 10. Arcs in ovals 11. Cubic curves 12. Arcs of higher degree 13. Blocking sets 14. Small planes Appendix Notation References.


Convexity and Its Applications

Convexity and Its Applications

Author: GRUBER

Publisher: Birkhäuser

Published: 2013-11-11

Total Pages: 419

ISBN-13: 3034858582

DOWNLOAD EBOOK

This collection of surveys consists in part of extensions of papers presented at the conferences on convexity at the Technische Universitat Wien (July 1981) and at the Universitat Siegen (July 1982) and in part of articles written at the invitation of the editors. This volume together with the earlier volume «Contributions to Geometry» edited by Tolke and Wills and published by Birkhauser in 1979 should give a fairly good account of many of the more important facets of convexity and its applications. Besides being an up to date reference work this volume can be used as an advanced treatise on convexity and related fields. We sincerely hope that it will inspire future research. Fenchel, in his paper, gives an historical account of convexity showing many important but not so well known facets. The articles of Papini and Phelps relate convexity to problems of functional analysis on nearest points, nonexpansive maps and the extremal structure of convex sets. A bridge to mathematical physics in the sense of Polya and Szego is provided by the survey of Bandle on isoperimetric inequalities, and Bachem's paper illustrates the importance of convexity for optimization. The contribution of Coxeter deals with a classical topic in geometry, the lines on the cubic surface whereas Leichtweiss shows the close connections between convexity and differential geometry. The exhaustive survey of Chalk on point lattices is related to algebraic number theory. A topic important for applications in biology, geology etc.