This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production.
As technology continues to saturate modern society, agriculture has started to adopt digital computing and data-driven innovations. This emergence of “smart” farming has led to various advancements in the field, including autonomous equipment and the collection of climate, livestock, and plant data. As connectivity and data management continue to revolutionize the farming industry, empirical research is a necessity for understanding these technological developments. Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture provides emerging research exploring the theoretical and practical aspects of critical technological solutions within the farming industry. Featuring coverage on a broad range of topics such as crop monitoring, precision livestock farming, and agronomic data processing, this book is ideally designed for farmers, agriculturalists, product managers, farm holders, manufacturers, equipment suppliers, industrialists, governmental professionals, researchers, academicians, and students seeking current research on technological applications within agriculture and farming.
This book was created with the intention of informing an international audience about the latest technological aspects for developing smart agricultural applications. As artificial intelligence (AI) takes the main role in this, the majority of the chapters are associated with the role of AI and data analytics components for better agricultural applications. The first two chapters provide alternative, wide reviews of the use of AI, robotics, and the Internet of Things as effective solutions to agricultural problems. The third chapter looks at the use of blockchain technology in smart agricultural scenarios. In the fourth chapter, a future view is provided of an Internet of Things-oriented sustainable agriculture. Next, the fifth chapter provides a governmental evaluation of advanced farming technologies, and the sixth chapter discusses the role of big data in smart agricultural applications. The role of the blockchain is evaluated in terms of an industrial view under the seventh chapter, and the eighth chapter provides a discussion of data mining and data extraction, which is essential for better further analysis by smart tools. The ninth chapter evaluates the use of machine learning in food processing and preservation, which is a critical issue for dealing with issues concerns regarding insufficient foud sources. The tenth chapter also discusses sustainability, and the eleventh chapter focuses on the problem of plant disease prediction, which is among the critical agricultural issues. Similarly, the twelfth chapter considers the use of deep learning for classifying plant diseases. Finally, the book ends with a look at cyber threats to farming automation in the thirteenth chapter and a case study of India for a better, smart, and sustainable agriculture in the fourteenth chapter. This book presents the most critical research topics of today’s smart agricultural applications and provides a valuable view for both technological knowledge and ability that will be helpful to academicians, scientists, students who are the future of science, and industrial practitioners who collaborate with academia.
According to Prof. D. Despommier, by the year 2050, nearly 80% of the earth's population will reside in urban centers. Furthermore, the human population will increase by about 3 billion people during the interim. New land will be needed to grow enough food to feed them. At present, throughout the world, over 80% of the land that is suitable for raising crops is in use. What can be done to avoid this impending disaster? One possible solution is indoor farming. However, not all crops can easily be moved in an indoor environment. Nevertheless, to secure the food supply, it is necessary to increase the automation level in agriculture significantly. This book intends to provide the reader with a comprehensive overview of the impact of the Fourth Industrial Revolution and automation examples in agriculture.
This book provides a clear insight about IoD and its requirements, protocols, performance improvement, evaluation methods and challenging aspects, to the readers at one place. The recent enhancement of integrating drone with the Internet of things (IoT) technology promises tremendous global development. The top applications of the Internet of Drones (IoD) are expected to be infrastructure & building monitoring, fire service systems, insurance investigations, retail fulfilment, agriculture and forensic evidence collections. Conventional drone technology is enhanced with the Internet and other emerging technologies such as cloud computing, big data, artificial intelligence and communication networks which open up for enormous opportunities like ahead for on-demand service-oriented and user-friendly IoD applications. This book presents extensive knowledge about the role of IoT and emerging technology in drone networks. It focuses on major research areas of the Internet of Drones and its related applications. It provides a strong knowledge platform towards the Internet of Drones for graduates, researchers, data scientists, educators and drone hobbyists.
This book focuses on the recent advances in precision agriculture and satellite farming, detailing applications for sensing, data handling, modeling, and control. In addition, the book reviews its history - establishing the background on the various processes and applications – describes the current status, and offers insight into the future technology of satellite farming in India. Introducing processes and applications based on a global scale, the book reveals how precision agriculture can be used in large-scale agriculture, community agriculture, and diversified farming. It includes site-specific information from a variety of information sources for planning, planting, growing, and harvesting agricultural crops. It also presents a new concept based on the control system theory that can be used to formulate systematic methods for more effective precision crop production. Precision agriculture when properly integrated into the crop production process, can greatly improve overall production and sustainability.
THE DIGITAL AGRICULTURAL REVOLUTION The book integrates computational intelligence, applied artificial intelligence, and modern agricultural practices and will appeal to scientists, agriculturists, and those in plant and crop science management. There is a need for synergy between the application of modern scientific innovation in the area of artificial intelligence and agriculture, considering the major challenges from climate change consequences viz. rising temperatures, erratic rainfall patterns, the emergence of new crop pests, drought, flood, etc. This volume reports on high-quality research (theory and practice including prototype & conceptualization of ideas, frameworks, real-world applications, policy, standards, psychological concerns, case studies, and critical surveys) on recent advances toward the realization of the digital agriculture revolution as a result of the convergence of different disruptive technologies. The book touches upon the following topics which have contributed to revolutionizing agricultural practices. Applications of Artificial Intelligence in Agriculture (AI models and architectures, system design, real-world applications of AI, machine learning and deep learning in the agriculture domain, integration & coordination of systems and issues & challenges). IoT and Big Data Analytics Applications in Agriculture (theory & architecture and the use of various types of sensors in optimizing agriculture resources and final product, benefits in real-time for crop acreage estimation, monitoring & control of agricultural produce). Robotics & Automation in Agriculture Systems (Automation challenges, need and recent developments and real case studies). Intelligent and Innovative Smart Agriculture Applications (use of hybrid intelligence in better crop health and management). Privacy, Security, and Trust in Digital Agriculture (government framework & policy papers). Open Problems, Challenges, and Future Trends. Audience Researchers in computer science, artificial intelligence, electronics engineering, agriculture automation, crop management, and science.
Food security is one of the primary themes of the United Nations’ Sustainable Development Goals. In this regard, agricultural engineering is considered the backbone of agriculture, and agricultural mechanization is considered a helpful way to enhance crop yield and farmers’ profitability. Technology in Agriculture presents research in the field of agricultural engineering technologies and applications in agricultural equipment engineering, biosystem engineering, energy systems engineering, and computers in agriculture. It provides an overview of recent advancements in agricultural engineering and examines key aspects of emerging technologies and their applications. In addition, the book explores modern methodologies such as artificial intelligence and machine learning for agricultural mechanization.
Given the central role of the food and agriculture system in driving so many of the connected ecological, social and economic threats and challenges we currently face, Rethinking Food and Agriculture reviews, reassesses and reimagines the current food and agriculture system and the narrow paradigm in which it operates. Rethinking Food and Agriculture explores and uncovers some of the key historical, ethical, economic, social, cultural, political, and structural drivers and root causes of unsustainability, degradation of the agricultural environment, destruction of nature, short-comings in science and knowledge systems, inequality, hunger and food insecurity, and disharmony. It reviews efforts towards 'sustainable development', and reassesses whether these efforts have been implemented with adequate responsibility, acceptable societal and environmental costs and optimal engagement to secure sustainability, equity and justice. The book highlights the many ways that farmers and their communities, civil society groups, social movements, development experts, scientists and others have been raising awareness of these issues, implementing solutions and forging 'new ways forward', for example towards paradigms of agriculture, natural resource management and human nutrition which are more sustainable and just. Rethinking Food and Agriculture proposes ways to move beyond the current limited view of agro-ecological sustainability towards overall sustainability of the food and agriculture system based on the principle of 'inclusive responsibility'. Inclusive responsibility encourages ecosystem sustainability based on agro-ecological and planetary limits to sustainable resource use for production and livelihoods. Inclusive responsibility also places importance on quality of life, pluralism, equity and justice for all and emphasises the health, well-being, sovereignty, dignity and rights of producers, consumers and other stakeholders, as well as of nonhuman animals and the natural world. - Explores some of the key drivers and root causes of unsustainability , degradation of the agricultural environment and destruction of nature - Highlights the many ways that different stakeholders have been forging 'new ways forward' towards alternative paradigms of agriculture, human nutrition and political economy, which are more sustainable and just - Proposes ways to move beyong the current unsustainable exploitation of natural resources towards agroecological sustainability and overall sustainability of the food and agriculture system based on 'inclusive responsibility'