This book provides an important structural analysis of polymer solutions and melts, using fractal analysis. The book covers the theoretical fundamentals of macromolecules fractal analysis. It then goes on to discuss the fractal physics of polymer solutions and the fractal physics of melts. The intended audience of the book includes specialists in chemistry and physics of polymer synthesis and those in the field of polymers and polymer composites processing.
This new volume focuses on the limitations, properties, and models in the chemistry and physics of engineering materials that have potential for applications in several disciplines of engineering and science. Contributions range from new methods to novel applications of existing methods. The collection of topics in this volume reflects the diversity of recent advances in chemistry and physics of engineering materials with a broad perspective that will be useful for scientists as well as for graduate students and engineers. This new book presents leading-edge research from around the world. Topics in the book include: • aerogels materials and technology • diffusion dynamics in nanomaterials • entropic nomograms • structural analyses of particulate-filled polymer nanocomposites mechanical properties • protection of rubbers against aging • structure-property correlation and forecast of corrosion This volume is also sold as part of a two-volume set. Volume 1 focuses on modern analytic methodologies in the chemistry and physics of engineering materials.
This timely volume provides an overview of polymer characterization test methods and presents experimental research in polymers using modern methods. Each chapter describes the principle of the respective method, as well as the detailed procedures of experiments with examples of actual applications and demonstrates the advantages and disadvantages
This 3-volume set covers new research and applications on physical chemical for engineering and applied sciences. Volume 1 discusses the principles and technological implications of industrial chemistry and biochemical physics. Volume 2 presents some fascinating phenomena associated with the remarkable features of high performance polymers and also
This new volume presents leading-edge research in the rapidly changing and evolving field of chemical materials characterization and modification. The topics in the book reflect the diversity of research advances in physical chemistry and electrochemistry, focusing on the preparation, characterization, and applications of polymers and high-density
Using fractal analysis, irreversible aggregation models, synergetics, and percolation theory, this book describes the main reactions of high-molecular substances. It is the first to give the structural and physical grounds of polymers synthesis and curing based on fractal analysis. It provides a single equation for describing the relationship between the reaction rate constants and the equilibrium constants with the nature of the medium.
Between June 6-10, 1988, the Third Chemical Congress of North America was held at the Toronto Convention Center. At this rare gathering, fifteen thousand scientists attended various symposia. In one of the symposia, Professor Pierre-Gilles de Gennes of College de France was honored as the 1988 recipient of the Amer ican Chemical Society Polymer Chemistry Award, sponsored by Mobil Chemical Corporation. For Professor de Gennes, this international setting could not be more fitting. For years, he has been a friend and a lecturer to the world scientific community. Thus, for this special occasion, his friends came to recount many of his achievements or report new research findings mostly derived from his theories or stimulated by his thoughts. In this volume of Proceedings, titled New Trends in Physics and Physical Chemistry of Polymers, we are glad to present the revised papers for the Symposium and some contributed after the Symposium. In addition, we intend to include most of the lively discussions that took plaGe during the conference. This volume contains a total of thirty-six papers divided into six parts, primarily according to the nature of the subject matter: • Adsorption of Colloids and Polymers. • Adhesion, Fractal and Wetting of Polymers. • Dynamics and Characterization of Polymer Solutions. • Diffusion and Interdiffusion of Polymers. • Entanglement and Reptation of Polymer Melts and Networks. • Phase Transitions and Gel Electrophoresis.
For several years, I have been responsible for organizing and teaching in the fall a short course on "Fundamentals of Adhesion: Theory, Practice, and Applications" at the State University of New York at New Paltz. Every spring I would try to assemble the most pertinent subjects and line up several capable lecturers for the course. However, there has always been one thing missing-an authoritative book that covers most aspects of adhesion and adhesive bonding. Such a book would be used by the participants as a main reference throughout the course and kept as a sourcebook after the course had been completed. On the other hand, this book could not be one of those "All you want to know about" volumes, simply because adhesion is an interdisciplinary and ever-growing field. For the same reason, it would be very difficult for a single individual, especially me, to undertake the task of writing such a book. Thus, I relied on the principle that one leaves the truly monumental jobs to experts, and I finally succeeded in asking several leading scientists in the field of adhesion to write separate chapters for this collection. Some chapters emphasize theoretical concepts and others experimental techniques. In the humble beginning, we planned to include only twelve chapters. However, we soon realized that such a plan would leave too much ground uncovered, and we resolved to increase the coverage. After the book had evolved into thirty chapters, we started to feel that perhaps our mission had been accomplished.
Nanocolloids for Petroleum Engineering Enables readers to understand nanocolloids in upstream operations in the oil industry from an applied and theoretical point of view Nanocolloids for Petroleum Engineering brings together the background, latest advances, and practical and theoretical information about nanocolloids for petroleum engineering in one comprehensive volume. The text is structured in such a way to allow readers to easily distinguish key points and quickly gain the expertise they need to become more effective in their respective disciplines. For practical purposes and to aid in seamless reader comprehension, experiences of service companies, general guidance, and problem solving exercises are included throughout the text. The highly qualified authors specifically present the subject as petroleum experts and use a niche industry point of view, which means petroleum, reservoir, and drilling engineers will be able to quickly understand and digest the information contained within. Sample topics covered in the work include: A brief introduction to and classification of colloid systems, describing the main properties of nanocolloids crucial for practical application in petroleum engineering Nanocolloids application in reservoir engineering and development, illustrating reservoir conditions necessary for nanocolloids formation Nanocolloid applications in production operations, including the mechanism of nanoscale dispersion phase impact on physical properties of conventional substances utilized in upstream processes Nanocolloid application in Enhanced Oil Recovery (EOR) and the impact of nanoparticles on conventional displacement agents Nanocolloids for Petroleum Engineering serves as a comprehensive reference work and standalone guide for petroleum engineers who are interested in gaining knowledge surrounding nanocolloids and harnessing that knowledge to aid in solving a wide variety of conventional challenges in the field.
Polymer Solutions: An Introduction to Physical Properties offers a fresh, inclusive approach to teaching the fundamentals of physical polymer science. Students, instructors, and professionals in polymer chemistry, analytical chemistry, organic chemistry, engineering, materials, and textiles will find Iwao Teraoka’s text at once accessible and highly detailed in its treatment of the properties of polymers in the solution phase. Teraoka’s purpose in writing Polymer Solutions is twofold: to familiarize the advanced undergraduate and beginning graduate student with basic concepts, theories, models, and experimental techniques for polymer solutions; and to provide a reference for researchers working in the area of polymer solutions as well as those in charge of chromatographic characterization of polymers. The author’s incorporation of recent advances in the instrumentation of size-exclusion chromatography, the method by which polymers are analyzed, renders the text particularly topical. Subjects discussed include: Real, ideal, Gaussian, semirigid, and branched polymer chains Polymer solutions and thermodynamics Static light scattering of a polymer solution Dynamic light scattering and diffusion of polymers Dynamics of dilute and semidilute polymer solutions Study questions at the end of each chapter not only provide students with the opportunity to test their understanding, but also introduce topics relevant to polymer solutions not included in the main text. With over 250 geometrical model diagrams, Polymer Solutions is a necessary reference for students and for scientists pursuing a broader understanding of polymers.