This book represents the most complete and authoritative description on the fine structure of the nervous system available in a single volume. Beginning with background material on the neuron, the book then examines specific portions of the nerve cell, and of the various supporting cells. Structure is first described in a general fashion, followed by detailed coverage of the fine structure of each component, with full discussion of how the structural features relate to their functions. Extensively revised and rewritten, this book will bring readers up to date with the many important developments that have taken place since publication of the previous edition. It includes over 130 electron micrographs and line drawings, many of which are new to this edition.
In the vast field of neuroscience, the introduction over the last 30 years of new investigative techniques (such as transmission and scanning electron microscopy, freeze-fracturing technique, cell organelle isolation by differential centrifugation, autoradiography, tracing techniques and immunocytochemistry) has greatly expanded our knowledge of neurocytology. This new information, however, is generally dispersed in the specialist journals or collected in reviews on specific topics. As a result, those whose interests lie in neurocytology have difficulty not only in finding data relative to their particular research, but also and above all, in gaining an overall and systematic vision of their discipline. It was this situation which prompted Ennio Pannese to systematize the major acquisitions on the minute structure of nerve and neuroglial cells and their interrelationships, correlate them with the classical concepts of light microscopy and integrate them, where possible, with elements of biochemistry and cell physiology.
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.
Biology of the Tapeworm Hymenolepis diminuta covers the physiological and biochemical aspects of the tapeworm Hymenolepis diminuta. This book relates past and present knowledge in the field of parasitology. This reference is organized into 12 chapters, starting with a brief discussion on life history and taxonomy of the species. This is followed by the developmental biology of the fertilized ovum to the formation of the cysticercoids in an insect host. Discussions on the embryological, biochemical, and physiological aspects of H. diminuta, the intestinal helminth infections, and procedures for in vitro cultivation of various tapeworm species are provided. Chapter 7 presents a review of molecular DNA and RNA of H. diminuta and the results of isolation and characterization of these macromolecules. This is followed by a discussion on energy metabolism of adult H. diminuta in chapter 8. The latter four chapters focus on biochemical aspects of H. diminuta, including its membrane biology, immunity, and migratory and chemotherapeutic activities. This book encourages diversity among future studies in helminth ecology, physiology, immunology, and biochemistry. It will serve its purpose and ensure that parasitology field continues.
Scientists agree that exposure to toxic agents in the environment can cause neurological and psychiatric illnesses ranging from headaches and depression to syndromes resembling parkinsonism. It can even result in death at high exposure levels. The emergence of subclinical neurotoxicity-the concept that long-term impairments can escape clinical detection-makes the need for risk assessment even more critical. This volume paves the way toward definitive solutions, presenting the current consensus on risk assessment and environmental toxicants and offering specific recommendations. The book covers: The biologic basis of neurotoxicity. Progress in the application of biologic markers. Reviews of a wide range of in vitro and in vivo testing techniques. The use of surveillance and epidemiology to identify neurotoxic hazards that escape premarket screening. Research needs. This volume will be an important resource for policymakers, health specialists, researchers, and students.
Conn's Translational Neuroscience provides a comprehensive overview reflecting the depth and breadth of the field of translational neuroscience, with input from a distinguished panel of basic and clinical investigators. Progress has continued in understanding the brain at the molecular, anatomic, and physiological levels in the years following the 'Decade of the Brain,' with the results providing insight into the underlying basis of many neurological disease processes. This book alternates scientific and clinical chapters that explain the basic science underlying neurological processes and then relates that science to the understanding of neurological disorders and their treatment. Chapters cover disorders of the spinal cord, neuronal migration, the autonomic nervous system, the limbic system, ocular motility, and the basal ganglia, as well as demyelinating disorders, stroke, dementia and abnormalities of cognition, congenital chromosomal and genetic abnormalities, Parkinson's disease, nerve trauma, peripheral neuropathy, aphasias, sleep disorders, and myasthenia gravis. In addition to concise summaries of the most recent biochemical, physiological, anatomical, and behavioral advances, the chapters summarize current findings on neuronal gene expression and protein synthesis at the molecular level. Authoritative and comprehensive, Conn's Translational Neuroscience provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, as well as a clear demonstration of their emerging diagnostic and therapeutic importance. - Provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, while also clearly demonstrating their emerging diagnostic and therapeutic importance - Features contributions from leading global basic and clinical investigators in the field - Provides a great resource for researchers and practitioners interested in the basic science underlying neurological processes - Relates and translates the current science to the understanding of neurological disorders and their treatment