This book provides introductory, comprehensive, and concise descriptions of amorphous chalcogenide semiconductors and related materials. It includes comparative portraits of the chalcogenide and related materials including amorphous hydrogenated Si, oxide and halide glasses, and organic polymers. It also describes effects of non-equilibrium disorder, in comparison with those in crystalline semiconductors.
Amorphous chalcogenide semiconductors have commercial value and have many uses such as image formation, including x-rays, and high-definition TV pick up tubes. They have widespread application in the microelectronics industry and amorphous metallic alloys also have useful magnetic properties.This book focuses on their imaging applications and related properties. It examines the two groups of amorphous semiconductors that are of most commercial interest:1. the chalcogenide glasses2. the tetrahedrally bonded amorphous solids such as amorphous silicon, germanium and related alloysBoth of these groups may be conveniently prepared in the form of thin/thick films which is of considerable importance in applications where large-area coverage of flat or curved surfaces of rigid or flexible materials is desirable such as in photovoltaic arrays, X-Ray sensors, display screens and photocopier drums. - Provides information on the amorphous semiconductors that are of most commercial interest - Presents the history of the commercial applications, the latest developments and future possibilities
This book provides a comprehensive overview of the chalcogenide glass science and various applications based on the glasses. It starts with a review on the glass-forming ability of various systems, followed by a discussion on the structural and physical properties of various chalcolgenide glasses and their application in integrated optics. The chap
Amorphous semiconductors are subtances in the amorphous solid state that have the properties of a semiconductor and which are either covalent or tetrahedrally bonded amorphous semiconductors or chelcogenide glasses. Developed from both a theoretical and experimental viewpoint Deals with, amongst others, preparation techniques, structural, optical and electronic properties, and light induced phenomena Explores different types of amorphous semiconductors including amorphous silicon, amorphous semiconducting oxides and chalcogenide glasses Applications include solar cells, thin film transistors, sensors, optical memory devices and flat screen devices including televisions
A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devicesÂżoptical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.
Although amorphous semiconductors have been studied for over four decades, many of their properties are not fully understood. This book discusses not only the most common spectroscopic techniques but also describes their advantages and disadvantages. - Provides information on the most used spectroscopic techniques - Discusses the advantages and disadvantages of each technique
A reissue of a classic Oxford text. The book sets out theoretical concepts and makes comparisons with experiments for a wide variety of phenomena in non-crystalline materials.
This book introduces readers to a wide range of applications for elements in Group 16 of the periodic table, such as, optical fibers for communication and sensing, X-ray imaging, electrochemical sensors, data storage devices, biomedical applications, photovoltaics and IR detectors, the rationale for these uses, the future scope of their applications, and expected improvements to existing technologies. Following an introductory section, the book is broadly divided into three parts—dealing with Sulfur, Selenium, and Tellurium. The sections cover the basic structure of the elements and their compounds in bulk and nanostructured forms; properties that make these useful for various applications, followed by applications and commercial products. As the global technology revolution necessitates the search for new materials and more efficient devices in the electronics and semiconductor industry, Applications of Chalcogenides: S, Se, and Te is an ideal book for a wide range of readers in industry, government and academic research facilities looking beyond silicon for materials used in the electronic and optoelectronic industry as well as biomedical applications.
A review summarising the current state of research in the field, bridging the gaps in the existing literature. All the chapters are written by world leaders in research and development and guide readers through the details of photo-induced metastability and the results of the latest experiments and simulations not found in standard monographs on this topic. A useful reference not only for graduates but also for scientific and industrial researchers. With a foreword of Kazunobu Tanaka