Explores the complexity and wide-ranging applications of the Fibonacci sequence, which appears in nature, art, economics, and the "golden ratio," which is derived from this simple pattern of numbers.
ALSC Notable Children's Book A wonderful introduction to one of the most beautiful connections between mathematics and the natural world–the Fibonacci sequence–through a series of stunning nature photographs. Discover the biggest mathematical mystery in nature—Fibonacci numbers! Named after a famous mathematician, the number pattern is simple and starts with: 1, 1, 2, 3, 5, 8, 13. Each number in the sequence comes from adding the two numbers before it. What's the mystery? The pattern crops up in the most unexpected places. You'll find it in the disk of a sunflower, the skin of a pineapple, and the spiral of a nautilus shell. This book brings math alive, celebrates science, and will inspire kids to see nature through new eyes.
Provides an introduction to the Fibonacci sequence and its presence in the animal world, including the equiangular spiral of a sundial shell, a parrot's beak, a hawk's talon, and a ram's horn.
What exactly is the Golden Ratio? How was it discovered? Where is it found? These questions and more are thoroughly explained in this engaging tour of one of mathematics' most interesting phenomena. The authors trace the appearance of the Golden Ratio throughout history, demonstrate a variety of ingenious techniques used to construct it, and illustrate the many surprising geometric figures in which the Golden Ratio is embedded. Requiring no more than an elementary knowledge of geometry and algebra, the authors give readers a new appreciation of the indispensable qualities and inherent beauty of mathematics.
Praise for the First Edition “ ...beautiful and well worth the reading ... with many exercises and a good bibliography, this book will fascinate both students and teachers.” Mathematics Teacher Fibonacci and Lucas Numbers with Applications, Volume I, Second Edition provides a user-friendly and historical approach to the many fascinating properties of Fibonacci and Lucas numbers, which have intrigued amateurs and professionals for centuries. Offering an in-depth study of the topic, this book includes exciting applications that provide many opportunities to explore and experiment. In addition, the book includes a historical survey of the development of Fibonacci and Lucas numbers, with biographical sketches of important figures in the field. Each chapter features a wealth of examples, as well as numeric and theoretical exercises that avoid using extensive and time-consuming proofs of theorems. The Second Edition offers new opportunities to illustrate and expand on various problem-solving skills and techniques. In addition, the book features: • A clear, comprehensive introduction to one of the most fascinating topics in mathematics, including links to graph theory, matrices, geometry, the stock market, and the Golden Ratio • Abundant examples, exercises, and properties throughout, with a wide range of difficulty and sophistication • Numeric puzzles based on Fibonacci numbers, as well as popular geometric paradoxes, and a glossary of symbols and fundamental properties from the theory of numbers • A wide range of applications in many disciplines, including architecture, biology, chemistry, electrical engineering, physics, physiology, and neurophysiology The Second Edition is appropriate for upper-undergraduate and graduate-level courses on the history of mathematics, combinatorics, and number theory. The book is also a valuable resource for undergraduate research courses, independent study projects, and senior/graduate theses, as well as a useful resource for computer scientists, physicists, biologists, and electrical engineers. Thomas Koshy, PhD, is Professor Emeritus of Mathematics at Framingham State University in Massachusetts and author of several books and numerous articles on mathematics. His work has been recognized by the Association of American Publishers, and he has received many awards, including the Distinguished Faculty of the Year. Dr. Koshy received his PhD in Algebraic Coding Theory from Boston University. “Anyone who loves mathematical puzzles, number theory, and Fibonacci numbers will treasure this book. Dr. Koshy has compiled Fibonacci lore from diverse sources into one understandable and intriguing volume, [interweaving] a historical flavor into an array of applications.” Marjorie Bicknell-Johnson
"The 24 ready-to-use, independent activities and projects in Fibonacci Fun are structured so students can work individually or in groups and then share information during class discussions. Topics include geometry, statistics, networks, coordinate graphing, calculators, number bases, problem solving, and patterns."--Page 4 of cover
The most ubiquitous, and perhaps the most intriguing, number pattern in mathematics is the Fibonacci sequence. In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature - from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world. With admirable clarity, two veteran math educators take us on a fascinating tour of the many ramifications of the Fibonacci numbers. They begin with a brief history of a distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal's triangle, to name a few. Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.
Designed for ages grades K-5 and to be done at home or with small groups, this interactive multi-activity mini-course introduces children to the Fibonacci sequence and how math and art can intersect with science and nature. It takes one of the most fascinating mathematical topics, the Fibonacci sequence, and the related Golden Ratio, and shows children how math can be used to see patterns in all kinds of natural settings, such as leaf arrangement, snail shells, and hurricanes. The mini-course includes a richly illustrated story-based lesson, as well as games, activities, and projects that appeal to all types of learners. An illustrated story about Fibonacci and his imaginary bean stalk introduces children to the mathematical concepts of sequences and sets, as well as an illustration of Fibonacci's famous pattern. By creating their own Fibonacci Flower Books, children then begin to investigate some of the places the famous sequence is found in nature. Children are then encouraged to visualize the relationship between numbers and shapes as they learn how to create their own Golden Spirals from the Fibonacci sequence. What elements of nature can they see in their spirals? Next, in the Purely Numbers Game, children reinforce and expand their understanding of these mathematical concepts by making their own mathematical sets. Finally, children will have fun testing how well they know the Fibonacci sequence by playing the movement-based Walk for Fibonacci. Most materials needed to complete the mini-course can be cut from the book. The mini-course requires only a few additional common household items to complete the activities: Colored pencils, eraser, pencil, scissors, mathematical compass (optional), two dice, blank paper, tape or glue. Upon completing the mini-course, children will be provided with links to additional online resources and will earn new concept badges for their Science Tool Kit (included in the mini-course)- - including Sequence, Pattern, Phyllotaxis, Opposite Phyllotaxis, and Sum.
This survey of the use of Fibonacci and Lucas numbers and the ancient principle of the Golden Section covers areas relevant to operational research, statistics, and computational mathematics. 1989 edition.