The Extended Stochastic Integral In Linear Spaces With Differentiable Measures And Related Topics

The Extended Stochastic Integral In Linear Spaces With Differentiable Measures And Related Topics

Author: Nicolai Victorovich Norin

Publisher: World Scientific

Published: 1996-08-30

Total Pages: 274

ISBN-13: 9814499307

DOWNLOAD EBOOK

This volume discusses the extended stochastic integral (ESI) (or Skorokhod-Hitsuda Integral) and its relation to the logarithmic derivative of differentiable measure along the vector or operator field. In addition, the theory of surface measures and the theory of heat potentials in infinite-dimensional spaces are discussed. These theories are closely related to ESI.It starts with an account of classic stochastic analysis in the Wiener spaces; and then discusses in detail the ESI for the Wiener measure including properties of this integral understood as a process. Moreover, the ESI with a nonrandom kernel is investigated.Some chapters are devoted to the definition and the investigation of properties of the ESI for Gaussian and differentiable measures.Surface measures in Banach spaces and heat potentials theory in Hilbert space are also discussed.


Differentiable Measures and the Malliavin Calculus

Differentiable Measures and the Malliavin Calculus

Author: Vladimir Igorevich Bogachev

Publisher: American Mathematical Soc.

Published: 2010-07-21

Total Pages: 506

ISBN-13: 082184993X

DOWNLOAD EBOOK

This book provides the reader with the principal concepts and results related to differential properties of measures on infinite dimensional spaces. In the finite dimensional case such properties are described in terms of densities of measures with respect to Lebesgue measure. In the infinite dimensional case new phenomena arise. For the first time a detailed account is given of the theory of differentiable measures, initiated by S. V. Fomin in the 1960s; since then the method has found many various important applications. Differentiable properties are described for diverse concrete classes of measures arising in applications, for example, Gaussian, convex, stable, Gibbsian, and for distributions of random processes. Sobolev classes for measures on finite and infinite dimensional spaces are discussed in detail. Finally, we present the main ideas and results of the Malliavin calculus--a powerful method to study smoothness properties of the distributions of nonlinear functionals on infinite dimensional spaces with measures. The target readership includes mathematicians and physicists whose research is related to measures on infinite dimensional spaces, distributions of random processes, and differential equations in infinite dimensional spaces. The book includes an extensive bibliography on the subject.


Applied Stochastic Differential Equations

Applied Stochastic Differential Equations

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 327

ISBN-13: 1316510085

DOWNLOAD EBOOK

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.